tel.

Intel® NetStructure™ ZT 4901
High Availability Software

Technical Product Specification

April 2003

Order Number: 273856-002

Download from Www.Somanuals.com. All Manuals Search And Download.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® NetStructure™ ZT 4901 High Availability Software may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,
ETOX, FlashFile, i386, 486, 1960, iCOMP, InstantlP, Intel, Intel logo, Intel386, Intel486, Intel740, InteIDX2, IntelDX4, IntelSX2, Intel Create & Share,
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium Il Xeon, Pentium Ill Xeon, Performance at Your
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation, 2003

2 High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intGI & Contents

Contents

1 DOCUMENT OFGANTZALIONeiiiiiiiiiiie ittt ettt e e e sttt e e s aba e e e e e nnbbbe e e e e snees 9
2 T o T [T3 T Y o S 11
P2 R = 1 01110 To] oo | PP PUPRPPPPPPPPRN 11

2.2 High Availability Hardware APProachcccccieiiiiiiieiiiiee e 14

2.2.1 ProCesSOr BOAISccicuiiiiiiiieeie e s is sttt et e e e e e e e sss st e e e e aae e s s s nnnennnaeereaeaeesenan 15

2.2.2 Bridge MEZZANINEcoiiiiiieiiiiiie ettt et et 16

2.2.3 BACKPIANE ...t 17

2.3 High-Availability Software APProach..........ccooiieiiiiiiiiiee e 18

2.3.1 HOSt APPIICALION ..eeieieiiiiiiee ettt et 18

2.3.2 SYStemM Man@gEMENT........uiiiiiiiieiiee ittt e e e e s eeeeea s 19

2.3.3 Backplane DeViICE DIiVEIS........coiii ittt 20

3 HOSt APPIICAtION SOFIWEAIE ...t e e eaeens 21
3.1 Goals of the HOSt APPICALIONueeeiiiiiiie it e e e e e 21

311 SErVICEADIIYccce e ———— 21

700 2 = o T = o |1 21

700 G T = L= T (1] o = o o Y2 21

3.2 DIVISION OF LADOT ...t 22

3.3 DEVEIOPMENT ISSUESveiiiiiiiiiiieieie s et e et e e e e e et e ettt e s e s e e e e e e e e aaaaeaaaaaaaseaeeeanes 23

70 700 R = L= T (1] o = o o Y2 23

3.3.2 Graceful SWILCHOVEToiiiiiiiiie e 24

3.3.3 Hardened APPIICALIONS.........euuiiiiceceie e 24

0 20 A 0o o [1V o o (1] £ 41 Y 24

4 SYSTEM MaANAGEIMENT ...t e e e et e et e e e e e e aabb e e e e ee b s e aeeeesanns 25
ot R = L= o [0 o F= U | o [0 1) AN . PSS 25

Ot N | Y | Y = SRS 25

4.1.2 HOUSWAP AP oot 26

ot 0 T (o] A @01] 2 SRS 26

4.2 Baseboard Management Controller Firmware Enhancements..........ccccovcvvveeiniiieeninineens. 26

4.2.1 Fault ConfigUurationceeeeiiiiiiiiee e e e sb e 26

4.2.2 1SOlAiON SIrALEUIES ...eeiii ittt ettt e e e e 27

4.2.3 IPMI RH Channel COMMEAaNUS........cuieiieiiiiiiiiiiiiireeee e e e e sssseeeeeee e e sae e s s nneeneeeeeeees 28

4.2.3.1 RHChannel Enabled ... 28

4.2.3.2 RH Channel Get RH BMC AdAreSsccoocovvvieeiiiieeiee e ciiiieeeeeeae e 28

5 High Availability CompactPCl DEVICE DIVEISccooiiiiiiieiiiiiiiie et 31
0 R B TV Tt I V=T I 1= T | o PRSI 31

5.1.1 DeVICE DIVEI STAESvviiiiiiiiieie ittt 32

5111 INIGIANZALION ..eeeeiiieiiie et 32

L0t 0t O © 11 1 = o = 32

5.1.1.3 ACHVALION ...eeeiiiiiiiiiii ettt 32

5.1.2 Adding High-Availability Functionalityccccccoeeeeiiieeiiieieereee 33

5.1.2.1 AU DEVICE......eiiitiii ettt ettt ettt 34

5.1.2.2 RESUME OPEIAtiONSeueiiieiiiiiiieiiiite e e sttt ettt e e e e saeee e 34

5.1.2.3 SUSPENT OPEIAtiONSvveiieiiiiiiiie ittt e e e 35

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 3

Download from Www.Somanuals.com. All Manuals Search And Download.

|]
Contents I ntGI &
5.1.2.4 REMOVE DEBVICE.oue ittt e e e e e a e s e raaas 35
5.1.2.5 Driver SYNChronization.............cueuuiiiiiiiiiiiiiiis e ieie e eeeeeeeeeeee e ee e aeeeeesinnnnes 35
LT T ¥ | 1 0 g =1 o YR PPPP PR SPPPIN 36
6 REAUNAANT HOSE AP ..t e e e e et e e e b e e sa e e s ab e e sba e e s aanses st eaeanses 37
6.1 INLEI-SPECITIC APIS...eeiiiiiiiieii e 37
70 0 R = N Y= (0153 £ V=T 1 0 LT 37
6.1.1.1 RhGetHwDestinatioNHOSIANARESELuvvvieeeieiieeeeeee e 37
6.2 Redundant HOSt PICMG® 2.12 APIS ...ttt et e e e e et s e et e e et e e e enaas 38
6.2.1 DefinitioNs ANd TYPES ...cciiiiiiiiiii ittt 39
6.2.2 INitializationN/TerMUNALIONcceeeeeeee ettt e e e e e et e e et e eaeeaaeesees 42
6.2.2.1 RhENUMEIAIEINSIANCES .. ccvvviiiiie ettt et e e e e e e eaaas 42
6.2.2.2 RRNOPEN...ci ittt 43
(ST T = o1 O [11 =TT 44
6.2.2.4 RRNGELINSIANCEID ...counieiieeeee e 44
6.2.3 Domain and Host INformation AP ... 45
6.2.3.1 RhGEetDOMAINCOUNL.......uiiiietiiiitce e e s e e e s e e e reaans 45
6.2.3.2 RhGetDOMAINNUMDEIS......ccuiiieieeeee e e 46
6.2.3.3 RhGetDomainOWNEIShIPccoiiiiiiieiiee e e e e e e e e e e a7
6.2.3.4 RhGetDoOmMaiNSIOtPatN.......ccviiieieeeeeee e 47
6.2.3.5 RhGetDOMaAINSIOICOUNLccvviiiieeeeeeee ettt e e e e e e e enes 49
6.2.3.6 RNGEIDOMAINSIOLS ... coevieeeee ettt r e e e e e eaes 49
(STVZRC T A = o [C1=1 A1 (015 L] o 1 F= 11 o 50
6.2.3.8 RhGetCurrentHOSINUMDEToeuiiiiiieie e 51
6.2.3.9 RNGEIHOSICOUNL.....cuuiiiiiiieie et e e e e e e aa e e ees 51
6.2.3.10 RNGEIHOSINUMDEIS. ...cottiiiiieie ettt ettt e e et e e e e e e e e eeanas 52
6.2.3.11 RNGEIHOSINAME. . .ccunieiite ettt e e e e e e e e e e e eaaaresees 53
6.2.3.12 RhSetHOStAVAIIaDIlitY..........coeiiiiiiiiie e 54
6.2.3.13 RhGetHostAvailability ... e 55
6.2.3.14 RhGetDomainAvailability TOHOSE............uuuiiiiiiiiii e 56
6.2.4 SIot INFOrMALION AP L. ...t a e ees 56
6.2.4.1 RhGetPhysicalSlotInformation..................uuvviiiiiiiiiiiiii e, 56
6.2.4.2 RhGetSIotChildINformationcooouuiiiiiiiiiiiee e 58
B.2.5 SWILCNOVET AP ... e e e et e e e e e e e ra e eeen 61
6.2.5.1 Switchover Scenarios and Theory of Operationccceeeeeveeeeereneeeenn. 61
6.2.5.2 RhPrepareFOrSWItChOVET.........ccuiiiiiiiiiiiice e 63
6.2.5.3 RhCancelPrepareForSWItChOVErccooviiiiiiiiiiie e 65
6.2.5.4 RhGetDomainSWCONNECHONSTAIUS........uvviierieeieeeeeeeeeee e e e eeeaes 66
6.2.5.5 RhGetSIotSWCONNECHONSIALUScevviiiieiiiieie e 67
6.2.5.6 RhPerformSWItCROVEccocuniiiie e 67
6.2.5.7 RhSetHWDEeStNAIONHOSEcoovniiiiii e 68
6.2.5.8 RhGetHWDESHINAtIONHOSEceieeeeeee et e e 70
6.2.6 Notification, Reporting and AlGrmSc..ooiiiiiiiiiiii e 70
6.2.6.1 RhEnableDomainStateNotification.............oovviieiiiieiieeeiee e 70
6.2.6.2 RhEnableSwitchoverNotification............ccovvvveeeieiii e 71
6.2.6.3 RhEnableSwitchoverRequestNotificationcccccevevniiiiiiiniiee e, 72
6.2.6.4 RhEnableUnsafeSwitchoverNotificationcccooveviveiiiiiiiiiiiiiiieiieee 73
6.2.6.5 RhDIisableNOtifiCatiON..........cuoiiiiiiiiiieie e 75
7 [[0 A Y= Vo T A 77
8 L1 od Y 2 TP 79
T R 101 0 @ o =T 1 0] 1 1= SRR 79
4 High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intGI & Contents

T 1111 o [0 (o= B 1Y/ PSR RUPUPPPPR 79
8.3 IMBDEVICEIOCONIIOluniiiiiiiei e e e e e e e e et e e e e e et eeeeeeeranas 79
8.4 ImbSendTimedI2CREQUESLuuiiiiiiiiiie e e e e 80
8.5 IMbSENdIPMIREQUESTooiiiiiiiiie e e e e e e e e e s b bbb e eeeeaaeeaaeas 81
8.6 IMDGEIASYNCIMESSAQE ... uututuuuuitieiiie ittt et e e e e e e ettt et e ettt ee e e et r s e s s e s e saaaeaaaeaaaaaaaseenaeanes 81
8.7 ImbISASYNCMeSsSageAVvaIlabIe ... 82
8.8 imbRegisterForAsyncMsgNOLIfICatioN..............oooiiiiiiiiiiicrc e 82
8.9 imbUnregisterForAsyncMSgNOLIfICAtiON.............ooiiiiiiiii e 82
8.10 IMDBGELLOCAIBMCAAIcoiitiii i et e e e e e e e e e e e e e esb s e e e seesabaeeeeeeens 83
8.11 IMBSEtLOCAIBMCAUAcoiiitii e et e e e et e e e e e e e aab s e e e seebabaeaaeeeees 83
8.12 IMBDGELIPMIVEISION ...ttt e e e e e bbbt e e e e e e e e e s st bbb beeeaaeaeeaaeas 84
9 SIOt CONIIOL AP ...ttt e e e e e e e e e e e e e aat e e e e e e eesaaa e eeessabaaneeeeeesaen 85
9.1 HSIOPENSIOICONIIONeetieiieeieeiie ettt ettt e e e et e e e e e e e e e e s e bbb reeeeaaeaeas 85
9.2 HSICIOSESIOICONIIOL. ... cieeiiit et e e e e e e e e et e e e e e e sabb e e e e ee b e eeeeeesanns 85
0.3 HSIGEESIOICOUNT .. .ottt et e e e e e e e e e e e e e e e est s e e e eestat e eeeesaabanneeeeessaen 86
9.4 HSIGEtBOAIAPIESENt ... ittt e e ettt e e e e e e et e e e e e e e et e e e e e sabb e e eeeeraan 86
9.5 HSIGetBoArdHEAItNYuuiiiiiii e 87
9.6 HSIGELSIOIPOWETcoveeiiieeeeee et et e e e e e e e e e e e e e et e e e e e sabb e eeeeesann 88
0.7 HSISEISIOtPOWET ..ottt et e e e et et e e e e e e e aa b e e e e e e eebaaa e eeessaabaneeeeeesaan 89
9.8 HSIGEISIOIRESELciviiiieeeieeeeee e e et e e e e e e et e e e e e e st e e e e e saabaeeeeeeaaan 89
9.9 HSISEISIOtRESELottt et e e e et e e e e e et e e e e e e et e e e e e rarb e eeeraan 90
9.10 HSIGELSIOIMBBENADIEcoeviiiiieiee e et e e e e e e aba e e e e eeaaan 91
9.11 HSISEtSIOtMBOBENADIE.........ceiiiieiee e e e e e e aaan 92
9.12 HSISEetSIOtEVENICAIIDACKiiiieeiee et aaes 93
10 DEMONSIratioN ULIHHTIES ...ciieiiiiii ettt e e e e et e e e e e e e eeeeeeera e eeeees 95
10.1 FUNCLONAI DESCHIPLION ..cueiiiie ettt e ettt e e e e eeeees 95
O T O A O £l [01 (=Y =V = Y 95
O T O = B 1) (=] 7= (oL 95
10.1.2.1 Software Initiated HANAOVEIS..........cuvveiiiiiiiee e 96

10.1.2.2 Hardware Initiated FalOVEIScceevveeieieeiecee e 96

10.1.2.3 Multiple Mode CapabilitieSuuuuuruiiiiiiiieieieie e 96

10.1.2.4 SWItChOVEN FUNCHONScciiiiiiiiei e e ee s 97

10.1.2.5 Host Domain Enumeration and AsSSOCIationccccoeeeevevviiieeeeeeeevinnnnn. 97

O T O T o) {0 .4 = 11T] T 97

10.1.2.7 Notification, Reporting and Alarmscccooviiieiiiiiiee e 97

O T R T 1 = 1Y/ | I 1) (=T 7= (o 98
10.1.3.1 Fault Configuration............oocueeeieiiiiieeeiieee et 98

10.1.3.2 1SOlAtiON STrAtEOY ...coiuvveeeeiiiiiie ettt 98

10.1.4 HOt SWAP INTEITACEeeeiiiiiiiiii e 99
10.1.4.1 HS Functional DeSCHPLIONccoiuiiiiiiiiiiieee e 99

10.1.4.2 Slot Information StIUCIUIEcoiiiiiiiiiii e 100

10.1.4.3 SIOt STALE ...coieeiieiei e et e e e e e e e e e e e e 101

10.1.5 Slot CoNtrol INtEIACEovvvuei e e eeeaean 101

LYo = PO PSP UPPPRPSRR 133
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Contents intGI@:

Figures
1 High-Availability CPU AIChILECIUIEeeeieiiiiiiiit s e et e e e e 11
2 RSS Processor Board BIOCK Diagram i ciceeieieie e e eee e et e n e e e e e e e e e 16
3 RSS Host with Bridge Mezzanine BIOCK Diagramuuuueieiiiiiiiiiiieisieieeeeeeeeeeeeeeeeeeeseeeeeeannenns 17
4 High-Availability System Backplane ArChiteCIUIecooiiiiiiiiiiiiiiiiiee e 18
5 Layered Host APPliCation DIAGIamMccuuii it ee ettt e e e e aee e e e e e e e e e s aeanes 22
6 Multi-Stated Driver FIOWCNAITcooo e 33

Tables
1 Channel DefinitioNS fOr ZT 5524 ..ot e e e e e e eea s 27
2 RH Channel Alert DESHINALIONS........uuiiieiieiiii et e e e e e e s r e e e e e e s assstenrrrereeeeeeseesannsnnrnnes 28
3 PCI Tree Information RetrieVal FIAgSccooiiiiiiiiiie et 100
4 Events that Generate Notification MESSAQGESccoiiiiiiiiiiiiiiiiee e 100
LIS (o] BS] = L (= o - Vo L PP PUT PSR 101

6 High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Revision History

Contents

Date Revision Description
April 2003 002 Removed three demonstratlpn l_JtlIltles from 10.1.2.7 and
removed Interhost Communication section.
January 2003 001 Initial release of this document

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Contents

This page intentionally left blank.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Document Organization

Intel® NetStructure™ ZT 4901 High Availability Software Technical Product Specification

This document describes the High Availability Software Development Kit for the Intel®
NetStructure™ ZT 4901 1/O Mezzanine Card. Following is asummary of the contents.

Chapter 2, “Introduction,” provides an overview of the hardware and software subsystems
supported by Intel’s High Availability Software Devel opment Kit.

Chapter 3, “Host Application Software,” covers the basic requirements needed for applications to
properly leverage Redundant Host architecture.

Chapter 4, “ System Management,” describes the philosophy behind system management through
the monitoring of onboard and chassis |ocated devices as well as the importance placed upon
logging other system resources.

Chapter 5, “High Availability CompactPCl Device Drivers,” describes the requirements placed on
adevicedriver in order to operate in a Redundant Host framework.

Chapter 6, “Redundant Host API,” presents a detailed description of the Redundant Host
Application Programming Interfaces. These function interfaces provide programmatic control of
takeover configurations and event notifications.

Chapter 7, “Hot Swap API,” outlines system configuration and event notification using the Hot
Swap API functions.

Chapter 8, “IPMI API,” describes system monitoring and alarming functions.

Chapter 9, “Slot Control API,” describes the interface for High Availability control of individual
CompactPCI slots.

Chapter 10, “Demonstration Utilities,” describesinteractive utilities used to configure and monitor
the High Availability attributes of the system.

Appendix A, “ Software Installation,” includes the procedures for installing the software
components that make up the High Availability platform architecture for systems running the
VxWorks* and Linux* operating environments.

Appendix B, “Redundant Host Function Return Values,” documents an extensive table of values
that are returned by the Redundant Host APIs.

Appendix C, “HSK Device Driver Interface for VxWorks* 5.4,” details how aVxWorks 5.4
backplane device driver functions within a Redundant Host environment.

Appendix D, “RH Device Driver Interface for Linux* 2.4,” details how a Linux 2.4 backplane
device driver functions within a Redundant Host environment.

Appendix E, “Design Guideline for Peripheral Vendors,” offersimportant information for
designing a device driver for usein the Intel® NetStructure™ Redundant Host environment.

Appendix F, “Porting ZT 5550 HA Applicationsto PICMG 2.12,” providesinformation for porting
applications that were written for the Intel® NetStructure™ ZT 5550 to a PICMG* 2.12 based
system.

Download from Www.Somanuals.com. All Manuals Search And Download.

u
Document Organization Inte|®

10

Appendix G, “RH Switchover on OS Crash,” describes how the High-Availability Redundant Host
architecture enables the system master board to perform a switchover to the backup host in the
event of a system crash under the Linux and VVxWorks operating systems.

Appendix H, “Data Sheet Reference,” provides links to specifications and user documentation
relevant to the High Availability Software Development Kit.

Intel® NetStructure™ ZT 4901 High Availability Software Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Introduction 2

Intel® High Availability (HA) systems feature built-in redundancy for active system components
such as power supplies, system master processor boards, and system alarms. Redundant Host (RH)
systems are HA systems that feature an architecture allowing the Active Host system master
processor board to hand over control of its bus segment to a Standby Host system master processor
board.

This section gives an overview of the hardware and software used in systems supported by Intel’s
High Availability Software Development Kit (HASDK).

The following figure shows how the basic elementsin an HASDK system are related.
Figure 1. High-Availability CPU Architecture

Host Available Host

Application
Current Host Host
pplicati
CS";' i Comi) Rckplane Hot Swily RH RH
Dov?v:: Drivel Briver Driver Driver. %?;:::
Slot RH
. Comm Backplane | Hot Swap RH
OS/Drivers Control : ! 3 ; Comm
Driver Driver Driver Driver Driver Drivet
Slot Gomnd PCl-tgfPCI CompactPCl RH Comm
Controlldr Controlle Bffdge Interface Controller
Controller
>
Slot Comm - PCl-to-P Compagil RH Com
Hardware Co Co Bri Intel Con
b 3

’
| mpactPCl Bus # y

y

2.1 Terminology

The following terms are commonly used in this document:

Active Host (also known as Current Host, owner, or bus segment owner)—A board is said to
be Active or the Active Host if it is providing System Host functions to the peripheralsin a
CompactPCI backplane. This meansthat it isthe Owner of at |east one bus segment.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 11

Download from Www.Somanuals.com. All Manuals Search And Download.

Introduction

12

intel.

Application—Application-specific code, not including application-specific device drivers.

Arbitration—Hardware process of a bus master using the hardware REQ# signal to request the
PCI bus from the Active Host and then being granted access to the bus with the hardware GNT#
signal.

Available Host—A Host operating in Owner mode that can own domains and communicate with
the rest of the RH system. A Host, for example, that it is not switched off or not in some special
modein which it isisolated from the rest of the RH system.

BP Driver—A backplane device driver is the executable object residing in kernel space that
controls interaction between an application and an instance of adevice. For adevice driver to be
considered High Availability Aware, it must conform to specific requirements detailed in this
document.

Bus I nterface M ode—The mode of the bus segment interface from the CPU base board or the
bridge mezzanine board. The possible bus interface modes are owner mode, drone mode, and
peripheral mode.

Bus master—Any device given peer-to-peer access across the PCI bus to any other master or
target. A bus master must have been granted access to the PCI bus through arbitration.

C1C—The CompactPCI Interface Controller is responsible for coordinating switchovers. Itis
generally implemented in programmable logic.

Cluster mode—When two or more Hosts in an HA system are operating in Cluster mode, each
owns adomain and switchover of domain ownership is not allowed.

CMM—The CMM refersto the Chassis Management Module. The Chassis Management Module
maintains the status and control over management devices located inside the chassis.

Cold Switchover— During a cold switchover, bus ownership is transferred from a system master
Host to areceiving Host. The Host receiving bus ownership is then reset, which in turn resets all
the devices that are owned by that Host.

COM M —Ethernet, Media Independent Interface, and so on.

DDK—Driver Development Kit. Software development tools that enable devel opersto create
devicedrivers.

Destination Host—The Host that receives the specified domains owned by an Active Host if a
hardware-initiated switchover takes place on the Active Host.

Domain—A collection of peripheral PCI slotsthat is a Host’s unit of ownership. PCI-to-PCI
bridges can populate these slots, so the domain is generally a collection of PCI trees.

Drone mode (also known as | solated mode)—A Host operating in Drone mode is isolated from
the backplane.

Failover—A type of switchover that isinitiated by the Active Host, resulting from afailure that
leaves the domain in an unknown state and requires a bus segment reset to recover.

Fault-tolerant system—Hardware and software designed with redundancy to achieve very high
availability. Typically thisis ahigh-cost High Availability solution.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Introduction

Handover—A type of switchover that isinitiated by the Active Host, resulting from a software
command or Baseboard Management Controller detected fault wherein the bus segment is
quiesced before the transfer of system slot functions.

HA SDK—High Availability Software Development Kit

High-Availability (HA) system—Constructed from standard components with redundancy to
reduce the probability of interruptions. Typically, “five nines’ of availability are expected
(99.999%).

Host—A Host is a CPU board that is capable of providing system dlot functions and System Host
functions to the peripherals in a CompactPCl backplane. This can include any number of bus
segments.

Hot Pluggable—Hot pluggable in the context of this document refers to the driver model used by
devices that reside on the backplane that allows for asynchronous driver suspension and
resumption.

Hot Swap—The term Hot Swap refers to the ability of the hardware and software to work in
conjunction to support the insertion and removal of peripheral boards without requiring the chassis
to be powered-off during the operation.

Hot Switchover—A hot switchover refersto the state of the bus segment that is being inherited by
anewly Active Host. On a hot switchover bus ownership is transitioned and upon unmasking of
backplane interrupts, and enabling of grants, the busis allowed to operate without any recovery
actions.

Intelligent Platform Management Interface (IPM1)—A two-wire electrical bus through which
system- and power-management-rel ated chips can communicate with the rest of the system.

M anagement Controller—System Management Controller. This may be a Baseboard
Management Controller (BMC), a Satellite Management Controller (SMC) or a Dual Domain
Controller.

M ode Change—A mode changeis a change in Host domain ownership characteristics,
specifically, when Hosts change between Active/Active, Active/Standby, or Cluster modes. A
mode change can only occur when all operating Hosts agree through negotiation to change modes.

Owner Mode—A Host operating in Owner mode owns one or more domains. At any given
moment of time, one domain can be owned by no more than one Host. If a Host owns the domain,
software on the Host has access to PCI devices in (or behind) the PCI dots of the domain.

Redundant Host (RH) system—Two or more Hosts that control one or more domains. At any
given instant, no more than one Host can own one domain. If a Host ownsthe domain, software on
the Host has access to PCI devicesin (or behind) the PCI dots of the domain.

Redundant System Slot (RSS) board—Any CompactPCI board that meets the RSS bus interface
requirements in the CompactPCIl Hot Swap Infrastructure I nterface Specification, PICMG 2.12.
Thisincludes CPU boards and bridge mezzanine boards.

Segment A | nterface—The CompactPCI bus segment interface on the base CPU board.

Segment B I nterface—The CompactPCl bus segment interface on the bridge mezzanine.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 13

Download from Www.Somanuals.com. All Manuals Search And Download.

Introduction

2.2

14

intel.

Split M ode—Split Mode is aterm that refersto a system operating with multiple system master
Host boards that each own a single bus segment. Split Mode may refer to either Active/Active or
cluster modes. In an Active/Active either of two Hosts can inherit the other Host’s bus segment. In
cluster mode each Host's bus segment is locked to that Host and ownership cannot be transferred to
the other Host.

Sandby Host (also known asthe standby system master)—System board in aHigh Availability
system that is currently operating in Drone Mode and therefore not the Active Host. The Standby
Host has no visibility of the devices on the other side of the PCI-to-PCl bridge.

Switchover —Changing ownership of a domain from one Host to another.

System Host functions—Central functions provided to a CompactPCl bus segment including hot
swap event response, bus enumeration, and interrupt service. The system slot board provides these
functions.

System slot—Slot occupied by a System Master that performs arbitration for secondary bus
masters, responds to interrupts from peripheral boards, and drives a clock signal to each backplane
slot.

Takeover—A type of switchover that isinitiated by the Standby Host in a High Availability
system. A takeover may be hostile or friendly.

Warm Switchover—A warm switchover refersto the state of the domain that is being inherited by
the Host taking ownership. On awarm switchover domain ownership is transitioned and, before
any bus actions or operations are allowed to occur, the bus segment istoggled through reset. Thisin
effect resets al the devices that reside in the reset domain.

High Availability Hardware Approach

In an RH system the Redundant System Slot (RSS) subsystem is spread across several building
blocks. These include:

* Processor boards (such as the Intel® NetStructure™ ZT 5524 System Master Processor Board)
* Bridge mezzanine (such as the Intel® NetStructure™ ZT 4901 Mezzanine Expansion Card)
* Backplane (such asthe Intel® NetStructure™ ZT 4103 Redundant Host Backplane)

Other building blocks and subsystems may be required to support the RSS subsystem. These
include:

® System management
¢ Storage

* Power distribution
* Cooling

* Media

* Packet switching

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Introduction

Intel’s RH software runs on system master processor boards with bridge mezzanine cardsin a
PICMG 2.13 compliant RSS backplane to provide redundant system master functionality. This
allowsthe failover of control of redundant PCI buses. It provides faster hardware that is PICMG
2.9 and 2.16 compliant. The system makes use of the IPMI infrastructure for fault detection and
correction.

2.2.1 Processor Boards

The Host processor board is a CompactPCl system master processor board, such as the ZT 5524,

that can operate in Owner Mode or Drone Mode, and may operate in Peripheral Mode.

Additionally, it must be able to gracefully transition between modes by coordinating with a

Redundant Host (RH). The processor board must also support hot swap when it isin Drone Mode.

Thekey elementsthat allow RSS functionality are shown in Figure 2, “RSS Processor Board Block

Diagram” on page 16 and are described below.

PCI ThePCl interface to the backplane. Thismay beaPCI-to-PCl bridgelike
the Intel 21154, or some other PCI interface.

Iso/Term CompactPCI termination and isolation. Isolation is required to ensure
that the PCI interface does not affect the backplane bus segment when
the board interface isin Drone Mode. Termination is required when the
board interface isin Owner Mode. Theisolation may be integrated into
the PCI interface device.

Clk The clock generator for the CompactPCl bus segment when the board
interfaceisin Owner Mode.

CiCc The CompactPCI Interface Controller is responsible for coordinating
switchovers.

Arb Thebusarbiter for the CompactPCl when the board interfaceisin Owner
Mode.

HC The Host Controller provides the software accessible registers for
control and status of the CIC.

xMC The IPMI Management Controller may operate as a Baseboard
Management Controller (BMC) or Satellite Management Controller
(SMC). Thisdeviceis responsible for detecting faults and notifying the
CIC sothat it may makethe appropriate response. Additionally, thexMC
is responsible for power-on negotiation of bus ownership with a
redundant board.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 15

Download from Www.Somanuals.com. All Manuals Search And Download.

Introduction

Figure 2.

2.2.2

16

RSS Processor Board Block Diagram

(®)

O
o]
Base CPU Board
cpPu/ [T ™| Interboard
Chipset |« »| xMC L—»| Connector
A r
> HC
v Xreq
PO Control/Status
ciIC —— Control—;
T Iso/Term| ClIk. Arb.
A
\ 4 Y
CompactPCl J1/J2

Bus Segment A

Bridge Mezzanine

The HASDK driver set worksin single and dual bus segment configurations. In order for the dual
bus configuration to be supported a bridge mezzanine must be mounted on the processor board.

The bridge mezzanineis a board that is physically attached to the base processor board. The
processor board and bridge mezzanine are stacked such that they occupy two adjacent CompactPCl
dots.

Like the base processor board, the bridge mezzanine has a CompactPCl bus segment interface that
can operate in Owner Mode or Drone Mode. The bus interface mode of the bridge mezzanineis
independent of the processor board’s mode.

The bridge mezzanine contains elements that are identical to the base processor board in order to

create a second CompactPCl interface for connection to a different bus segment, as shownin
Figure 3, “RSS Host with Bridge Mezzanine Block Diagram” on page 17.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Introduction

Figure 3. RSS Host with Bridge Mezzanine Block Diagram

Base CPU Board Interboard

Connector

Interboard Bridge Mezzanine

Connector

CPU/
Chipset

[xmc }
B Sl
t

Xreq
Control/Status ;

PCI |—> Control j

T—{Iso/Terlm Cik. ‘ Atrb. ‘

Control/
Status

CIC Control PCI

‘ Arb. ‘ Clk. ‘Iso/Term‘

CompactPCl J1/J2
I

Bus Segment A

CompactPCl J1/J2
I

Bus Segment B

2.2.3 Backplane

The RSS system backplane supports two CompactPCl buses accessible by both Redundant Hosts.
In Active-Standby mode, the active processor board controls the buses (Active Host) and the

standby processor board isisolated from the backplane (Drone mode). By using Active-Active-

capable processor boards such asthe ZT 5524, the system can be configured so that each processor
board has access to one backplane bus (Cluster mode). The backplane has separate buses for

active-to-standby processor board communication (COMM) and Host Controller functions. See

Figure 4, “High-Availability System Backplane Architecture” on page 18 for an example of a

typical High-Availability backplane.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

17

Introduction

Figure 4.

2.3

2.3.1

18

intel.

High-Availability System Backplane Architecture

O IRCRCBoRORCIC]

- G@f@'@'@'@@f‘m"zo’??
— —

o POl] «C® [] F]
o FeOL] °C® []]

®

#B B
00+ 00+
00: 00

(e]o) oo

]] i [l

Host Processor Board / % Bridge Mezzanine Board
Bridge Mezzanine Board Redundant Host Processor Board

High-Availability Software Approach

AsshownintheFigure 1, “High-Availability CPU Architecture” on page 11, there are three High-
Availability software components:

* Host application
* System Management
* Backplane Device Drivers

Host Application

The host application serves as the central control mechanism for the platform. For a host
application to function in an RH environment it must be able to relinquish or receive control of the
system in a controlled manner. Dynamically transitioning of bus segment ownership between
active and backup requires the application to maintain data synchronization between the
applications on the redundant Hosts.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

2.3.2

Introduction

The design of the application should be made as portable as possible. This requires that the design
be implemented in amodul ar approach that isolates the system management requirements from the
host application. This division of responsibilities can be achieved through alayered
implementation. See Chapter 3, “Host Application Software” for more information.

In addition to taking amodular approach, the application designer should recognize the importance
of producing a hardened application. A hardened application must at least provide a capable
logging mechanism that allows for application faults to be reconstructed and corrected. It should
also adhere to good coding practices such as validating all input parameters and return statuses. A
more proactive approach is to implement fault recovery mechanisms. This could include the
capturing of faults and the isolation of faulted application components.

System Management

System management is the mechanism by which system confi@g)uration and fault characteristics are
established, insuring system health is maintained. In the Intel™ Redundant Host architecture there
are extensive sets of APIsthat provide the developer with afine level of control of the platform.

The API described in Chapter 6, “Redundant Host API” deals with the management of redundant
hosts that reside in asingle chassis. In order to manage such a configuration, a number of function
calls are required so that predetermined default actions can be prescribed depending on the desired
switchover strategy. The required functions are based on the Hot Swvap Infrastructure Interface
Soecification, PICMG 2.12, specifically in the Redundant Host API chapter. The supplied APIs
provide the following abilities:

¢ Enumerate the hosts, domains, and slots in the system
¢ Get information about devicesin slots
* |nitiate domain switchovers among hosts

Enable and disable notifications regarding switchover operations

* Specify actionsthat result from hardware-initiated alarms and control notifications about
alarms.

Chassis management is achieved using the IPMI infrastructure. The IPMI interface exposes the
embedded monitoring devices such as temperature and voltage sensors. Currently there is no
industry standard API for managing IPMI devices, primarily because the devicesthat are used may
vary significantly between chassis configurations. Since the drivers supplied for usein the
Redundant Host architecture are operating system dependant, the interfaces used to access the
IPMI devices are not necessarily portable between the supported operating systems.

The supplied Hot Swap API provides a mechanism to identify the topology and Hot Swap state
within a specified chassis. By using this API the system management application is able to identify
which slots are populated and the power states of the occupying boards. There are additional APIs
that allow for simulated backplane peripheral insertion and extraction. In addition, this API
provides for notification of Hot Swap events.

The Slot Control Interface isindependent of the Redundant Host driver. This separation of
functionality is designed to allow for slot control functionality in a chassis without full hot swap or
redundant host capabilities. The Slot Control API isbased on the PICMG 2.12 High Availability
Slot Control Interface functions. It interacts with the Slot Control Driver to create IPMI messages
through which a finer granularity of board control can be achieved then was found in previous
generations of High Availability systems. Using the Slot Control API the application can retrieve
information regarding “Board Present Detection”, “Board Healthy”, and “Board Reset” capability.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 19

Download from Www.Somanuals.com. All Manuals Search And Download.

Introduction

2.3.3

20

intel.

Backplane device drivers are acritical component of High Availability system. The drivers need to
be robust in their operations as well asto be dynamic given the “ Stated” nature of a Hot Swap
architecture.

Backplane Device Drivers

The ability of adriver to remain loaded and initialized even though the Host may not have visibility
to the deviceiscritical when Host ownership transfer can occur almost instantaneously. In order for
adriver to function in this environment the designer should implement the driver in a stated
fashion. This means that the driver must be able to be started and stopped asynchronously.

Another important factor when designing a driver that will function in a Redundant Host
environment is the ability to maintain synchronization between redundant device driversthat reside
on separate Hosts. In order to provide an easily implemented communication mechanism the Intel
HASDK providesasingle callback definition and API call. Thisdriver communication mechanism
enables not only a simple interface, but because of its simplicity, a very robust synchronization
tool.

The Intel Redundant Host architecture also provides support for those devices that require a
domain reset. The domain can be reset by using either of the following methods:

* Thedefault IPMI settings. These can be configured using the IPMI API, described in
Chapter 8, “IPMI API."

* The Redundant Host API using either the Switchover or Slot Information APIs, asdescribed in
Chapter 5, Chapter 6, “Redundant Host API.”

For more information regarding the Hot Swap and Redundant Host CompactPCI device driver

design model see Chapter 5, “High Availability CompactPCI Device Drivers.” Redundant Host
APIsand callback definitions for specific operating systems are in Appendix C, “HSK Device

Driver Interface for VxWorks* 5.4,” and Appendix D, “RH Device Driver Interface for Linux*
24

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Host Application Software 3

Through thoughtful design and the use of alayered development approach, an application can be
developed that meets the implied robustness of a highly available system and also is a portable
entity. In addition to covering the details of developing an application that runsin a High
Availability environment, this chapter provides a foundation for understanding the issues that a
developer needs to be aware of when deploying in amulti-host architecture.

3.1 Goals of the Host Application

Design goals that should be achieved for your application to perform successfully in aHigh
Availability environment are:

* Serviceahility
* Portability
¢ Redundancy

3.1.1 Serviceability

The first and probably most important attribute of an application isto maintain a constant level of
service. Thisability to provide aminimum level of functionality isreferred to as serviceability. The
concept of serviceability should not be restricted to performing the required functionality within
the domain of asingle Host, but should be considered at a much higher level. An applicationisthe
service or set of servicesthat need to be performed within the domain of a platform. By domain we
arereferring to the system that is providing the service. The system could be as simple as a system
master processor board, but more than likely the system will contain peripheral boards, chassis
management modules, various system sensors, and in the case of a redundant host architecture,
multiple system master boards.

3.1.2 Portability

Another goal isto design and implement a portable Host application. Some of the largest
investments that a provider makes arein the areas of application devel opment and maintenance. In
order to preserve as much of theinitial investment as possible, it isimportant to design the
application so that it is separated from specific platform components that may be enhanced or
changed. Portability can be achieved by isolating the application as much as possible from the
system management responsibilities required for High Availability. This separation of functionality
can be achieved through a combination of modular design and a layered software approach. This
topic is covered in more detail in Section 3.2, “Division of Labor” on page 22.

3.1.3 Redundancy

In order to achieve ahigh level of serviceability within a Redundant Host environment, it is
assumed that the host application has the ability to failover to another application. This backup
application should be amirrored copy of the original application that will likely reside on another

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 21

Download from Www.Somanuals.com. All Manuals Search And Download.

u
Host Application Software IntGI@:

3.2

System Host in the same chassis. In order for a host application to be capable of maintaining the
system’s serviceability, these redundant applications should maintain some level of
synchronization. The level of synchronization and the level of sophistication of the system’s
peripherals determine the failover characteristics of your system. Synchronization issues, in
addition to other implementation concerns, are covered in the Section 3.3, “ Development |ssues’
on page 23.

Division of Labor

Historically, embedded application devel opers have integrated the management of the system with
the host application. Thistight integration meant it was unlikely that much of the host application
could be ported when the application was rehosted on a new platform. This topic presents a
possible architecture that allows the host application to remain aware of system performance and
degradation while maintaining aloose coupling with the system management aspects of the
architecture.

One of the keysto portability in application design isto maintain a modular design. Thisgoal is
often complicated by routines used for system management that place particular requirements upon
the implementation of the application. One way to reduce the awareness of the application on a
particular implementation isto take alayered approach to the design of the application. In thisway
you can reduce specific implementation features without unnecessarily isolating the application
from the underlying performance of the system. See the “Layered Host Application Diagram”

bel ow.

Figure 5. Layered Host Application Diagram

22

Host Application

Platform Interface

System Management
Modules

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

3.3

3.3.1

Host Application Software

The diagram shows that the host application’s need to understand the particular implementation
aspects of the platform’s system management is reduced by placing an intermediary layer that in
effect interfaces and translates only the system management information that the host application
cares about. The host application should usually care about only those issues that would degrade
performance or cease operations, such as.

* Accessto peripherals

* System performance

* Integrity of operations
The platform interface can be more than a wrapper around exposed system functionality: It could
act as afilter with alevel of intelligence. The platform interface could be designed so that the
module could monitor system health and take proactive actions like initiating a handover, when
circumstances dictate. The platform interface might also be responsible for translating system-

particular messages and alerts into a normalized format that the application understands. The
events that a host application most likely requires notification of are:

* Switchover situations
* Warnings of system failures
* Theavailability of system resources

All these events should be handled first by the platform interface and relayed to the host
application only when they might impede performance.

Development Issues

There are several issues that an application developer of a High Availability system architecture
must be aware of:

¢ Redundancy

* Graceful switchover
* Hardened applications
¢ Code modularity

Redundancy

Redundancy, or at least the awareness of redundancy, must be designed into the application. This
requires that data be constantly normalized. The term data could mean anything from state
information to an entire database. The ultimate goa isto have a system that appropriately responds
to a switchover while maintaining the integrity of all system data.

The trade-off for maintaining a high level of synchronization is required overhead. The amount of
bandwidth required for data normalization can be effectively reduced by:

¢ Utilizing intelligent peripherals that internally maintain state
¢ Creating innovative methods of database sharing through shared RAID architectures

These are just examples of data synchronization; there are numerous ways to share data that are
dependant on your actual implementation.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 23

Download from Www.Somanuals.com. All Manuals Search And Download.

u
Host Application Software IntGI@:

3.3.2

3.3.3

3.3.4

24

Graceful Switchover

In a Redundant Host environment a graceful switchover is only secondary in importance to data
integrity. An effective mechanism isrequired in order for an application to seamlessly pick up the
functionality of afaulted application. The Intel Redundant Host environment has an infrastructure
in place to help facilitate such control transitions. This architecture supplies:

* Multiple communication paths
* A capable fault detection interface
¢ Embedded firmware that can be configured for multiple failover scenarios

In addition to providing afine level of granularity on the type of switchovers provided, this
platform also exposes these switchover events to an application or platform interface module so
that the software can act upon the events appropriately.

Hardened Applications

In almost all environmentsit isimportant to devel op applications in a hardened manner, but in a
highly available embedded environment it is especialy important. The definition of the term
“Hardened” may vary depending on the type of system that is being devel oped and the accessibility
of various system level software components. In the context of this Redundant Host architecture,
the term hardened refers to verifying that all function return codes are appropriately handled and
dispatched with accordingly, function parameters are validated, and that the system maintains a
logging mechanism sufficient to monitor system performance and to assist in diagnosing fault
conditions when present. Code hardening should be part of any standard development effort, but a
disciplined approach to code hardening must be maintained in an HA environment.

Code Modularity

Code modularity is also considered acommon implementation characteristic, but it is often
overlooked during the implementation portion of a project. In order to achieve some level of
application portability the designers need to make the conscience effort to move away from typical
embedded monolithic designs.

One approach to modular design in an HA architecture is to decoupl e the services provided by the
system from the entities responsible for system management. Since system management is heavily
dependant on the hardware configuration of the host platform, the implementation of a platform
interface module hel ps to abstract the host application away from the platform on which it resides.
The Platform Interface Modul e achieves platform abstraction by handling most hardware level
monitoring and exposing platform specific interfaces only through non-proprietary APIs. One of
the advantages of the Intel High Availability Redundant Host System is the reliance on industry-
standard, non-proprietary interfaces. These interfaces allow for future portability of the devel oped
code base.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

System Management 4

4.1

4.1.1

System Management is an all-encompassing term whose definition can vary drastically depending
on the type of system that is being devel oped. System Management can indicate anything from
system configuration all the way to active reporting, proactive fault remediation, and
comprehensive system security. In arelatively closed system with limited access to external
interaction, system management could be limited to chassis management, event logging, and
resource management. In systems that reguire more sophisticated external interface and a finer
granularity of control, system management mechanisms can provide a myriad of APIsand system
services for administering a system.

Theintent of this section is to give a developer an overview of what application programming
interfaces are supplied by the High Availability SDK (HASDK).

The HASDK provides System Management capable APIs. The APIs enable Redundant Host
configuration and administration, IPMI infrastructure communication and administration, Hot
Swap device detection and management, Slot Control for control and access of backplane slot
attributes.

Most of the details for creating and administering a Telco based solution are beyond the scope of
this document.

Redundant Host API

Among these APIsisaPICMG* 2.12 compliant Redundant Host Programming Interface. This
interface allows a client to perform the following operations:

* |nitialize and terminate an instance of thisinterface

¢ Enumerate the Hosts, domains and slots in the system

¢ Get information about devicesin slots

¢ |nitiate domain switchovers among Hosts

¢ Enable and disable notifications regarding switchover operations

* Specify actionsthat result from hardware-initiated alarms and control

See Chapter 6, “Redundant Host API,” for more information.

IPMI API

Platform management is a major component of a comprehensive system management architecture.
Platform management allows for status and event notification of all exposed interfaces such as
temperature sensors, voltage monitors, and other sensory devices. These status and
communications capabilities need to be as extensible as possible.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 25

Download from Www.Somanuals.com. All Manuals Search And Download.

u
System Management I nt6I ®

4.1.2

4121

4.2

42.1

26

The next-generation, high-availability architecture provides this system management infrastructure
using IPMI. Through the IPMI API the developer is able to access the status of individual sensors,
various management controllers, and to configure the system to initiate switchovers based on
events or threshold excursions. See Chapter 8, “IPMI API,” for details.

Hot Swap API

A critical feature of any system that claims to be Highly Available is the capability to perform
peripheral insertions and extractions without requiring that the system be powered off. In order to
provide this functionality akernel level Hot Swap infrastructure should be integrated into the
operating system. Thisinfrastructure allows for dynamic resource allocation for peripheral slot
cards. Given the dynamic nature of aHighly Available platform, the system management needs to
remain aware of the system’s topology. A PICMG 2.12 compliant Hot Swap API accomplishes
this. The Hot Swap API includes functions to return the state and popul ation of the CompactPCI
bus, to simulate unlatching a particular board's hot swap extractor, and to permit software
connection and disconnection. See Chapter 6, “ Redundant Host API,” for more information.

Slot Control API

Another part of system management is the ability to control individua peripherals cards. Under
normal circumstances in which a system is operating properly, little in the way of card control
needs to be performed. There are events that require actions to be taken to place the peripheral
cardsinto aknown state. It isthe responsibility of the slot control driver and the accompanying API
to provide this quiescing and peripheral shutdown functionality. This API provides control at the
card level, aswell as providing several functions that allow reporting the status of the periphera
card’s operationa state. See Chapter 9, “Slot Control API,” for more information.

Baseboard Management Controller Firmware
Enhancements

The HASDK takes advantage of the system master processor board's capability for board
management provided through its resident Baseboard M anagement Controller (BMC). The
standard capabilities of the BMC provide a high level of system management. To support RH
functionality, some extensions for bus segment control are added to IPMI v1.5 specification
support. These extensions include:

* Fault Configuration
* |solation Strategies
¢ CompactPCI Interface Controller interaction

Non-Volatile Storage of RH Parameters
IPMI RH Channel Commands

Fault Configuration

The BMC handles the following event triggering mechanisms for each entry in its Sensor Data
Record (SDR):

* Upper/Lower non-critical threshold

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

System Management

* Upper/Lower critical threshold
* Upper/Lower non-recoverable threshold

Each range can be set independently for each sensor and the ranges can overlap. This area of
configuration is used only to trigger events. These events appear in the System Event Log.
Platform Event Filtering (PEF) determines the actions that occur as aresult of these events. Only
the Upper/Lower non-recoverable threshold is typically configured using the PEF to cause a
hardware-initiated takeover to occur.

4.2.2 Isolation Strategies
The BMC handles the following event actionsin its PEF Table:
* Alert
¢ Power Off
* Reset
* Power Cycle
¢ Diagnostic Interrupt (NMI)
These options can be set independently for each event.
Support for aHandover action allows the takeover / handover process to occur fromthe BMC. This
action triggers the CompactPCl Interface Controller (CIC) to initiate the handover sequence. A
virtual RH channel facilitates this switchover request.
Table 1. Channel Definitions for ZT 5524
Channel # Description
0x0 IPMB 0
ox1 EMP
0x2 ICMB
0x3 PCI
0x4 SMM
0x5 RH Virtual Channel
0x 6 LAN Interface 2
ox 7 LAN Interface 1
0x 8 IPMB 1
0x 9 RESERVED
OxA RESERVED
0xB RESERVED
0xC Internal
0xD RESERVED
OxE Self
OxF SMS
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 27

Download from Www.Somanuals.com. All Manuals Search And Download.

u
System Management I nt6I ®

Table 2.

4.2.3

4231

4.2.3.2

28

RH Channel Alert Destinations

Destination # | Description

0x00 RESERVED
0x01 RH_CHAN_SET_ALL_MC_FD (Sets CIC Fault Detection Lines)
0x02 RH_CHAN_CLEAR_ALL_MC_FD (Clears CIC Fault Detection Lines)

The RH channel acts as avirtual channel that can respond to Alert Actions. This channel supports
IPMI commands like Alert Immediate:

¢ |nthe Alert Policy Table: Create an entry with a unique policy number, channel specified as
RH, destination specified asRH_CHAN_SET_ALL_MC_FD.

¢ |nthe Platform Event Filter Table: Create an entry with the Alert action selected, Alert Policy
Number defined as above, and the data mask specified based on the sensor thresholds to be
triggered.

IPMI RH Channel Commands

The following RH commands are present in the ZT 5524 processor board BMC firmware. These
are accessible only by sending the selected command/net function to the RH channel (0x05)

RH Channel Enabled

ThisIPMI command returns whether the board has RH features enabled or not. Conditions for non-
RH operation are: No IOX presence or the board isin anon-RH capable slot. Standard IPMI
completion codes are returned.

I PM Command: RH_CHAN_ENABLED (0x00)
Net Function: | NTEL_RH SPECI FI C_REQUEST (0x36)
Byt eData Fi el ds

Request - -

Response 1 Conpl eti on Code

2 1h = RSS enabl ed
Oh = RSS di sabl ed

RH Channel Get RH BMC Address

This command gets the IPMB 1 address of the redundant host’'s BMC. Standard IPMI completion
codes are returned.

I PM Command: RH CHAN GET_RH BMC_ADDR (0x05)

Net Function: |NTEL_RH SPECI FI C_ REQUEST (0x36)

Byt eData Fi el ds

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

u
I ntGI @ System Management

Request - -
Response 1 Conpl eti on Code
2 RH BMC Addr ess
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 29

Download from Www.Somanuals.com. All Manuals Search And Download.

u
System Management I nt6I ®

30

This page intentionally left blank.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

High Availability CompactPCI Device
Drivers)

5.1

This chapter describes the characteristics of highly available software drivers for CompactPCl
peripheralsin a Redundant Host environment.

To fully utilize the High Availability SDK, you must write a peripheral driver that can be started
and stopped repeatedly and that can be loaded and initialized even when the deviceit isservicingis
not physically visible to the operating system.

Device Driver Design

Historically, device drivers are relatively ssmplein their high level requirements. The operating
system detects a hardware component and loads a module of software that allows software-
initiated interaction with the hardware. It was assumed that the hardware configuration would not
change over the life of the system, or at the least would remain static between power cycles.

With the advent of CompactPCI these assumptions can no longer be guaranteed. One of the
primary advantages of a CompactPCl architecture is the ability to perform peripheral insertions
and extractions without requiring the chassis to be powered down. This system attributeis referred
to as Hot Swap. Because of this, system configurations can no longer be assumed to be static. This
dynamic configuration capability places new requirements on the operating system and the Hot
Swappable device drivers.

The operating system kernel now needs to be able to dynamically handle system resources, in
alocation and resource collections. Intel supplies a Hot Swap manager for operating systems
supported by the Intel® High Availability architecture. This manager is a component of the
operating system kernel that manages dynamic bus and resource allocations. Sincethisis akernel-
level function that is transparent to the devel oper, this document will not describe the details of this
module.

In order for a device driver to function in aHot Swap environment, the driver isrequired to
implement what is known as a Sated Driver Model. A stated device driver is constructed in a
manner that allows it to gracefully transition between multiple operational modes.

The specifics of stated device driver design vary for each operating system supported. Thisis due
to the Hot Swap implementation that is used by each operating system. If an operating system
natively supports Hot Swap events then the driver implementation will leverage the supported
driver model.

Thisisthe case with Linux* kernel version 2.4. Refer to Appendix D, “RH Device Driver Interface
for Linux* 2.4" for more information.

VxWorks* version 5.4 does not natively support a stated driver model, so Intel has provided
enhancements to this operating system. The specifics of the VxWorks CompactPCI driver model
can be found in Appendix C, “HSK Device Driver Interface for VxWorks* 5.4.”

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 31

Download from Www.Somanuals.com. All Manuals Search And Download.

u
High Availability CompactPCI Device Drivers Intel e

5.1.1

5.1.1.1

5.1.1.2

5.1.1.3

32

Device Driver States

There are varying degrees of functionality that are dependent on power modes, operating system
Hot Swap implementations, and device characteristics. But for adevice driver to function in this
High Availability architecture we can generalize the required driver states down to three distinct
states.

* [nitialization

* Quiesced

e Activation

Initialization

During initialization, the driver starts up and isloaded. The driver cannot “talk” directly to the
hardware devicesit is controlling, with the exception of PCI configuration cycles. Intel has
provided the ability to perform PCI configuration cycles to any backplane devices even if the
device driver resides on the Standby Host.

Quiesced

A quiesced device driver is completely initialized with all internal allocations and instantiations of
device information completed, ready to perform direct device operations. A device driver waitsfor
notification from the Hot Swap Manager viaa Sart or Resume callback mechanism, indicating that
the driver is free to access the device directly. The driver must be designed to transition between
Quiesced and Active states at any time.

Activation

Device activation notifies the driver that the system master isin the Active state; direct device
interaction is permitted. When a device driver receives a Sop or Suspend callback, the driver must
clean up any device-specific state information and transition to a known or Quiesced state.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

High Availability CompactPCI Device Drivers

Figure 6. Multi-Stated Driver Flowchart

5.1.2

AddDevice

Device
Suspended

Driver
Not Loaded

RemoveDevice /
SurpriseRemoval

Find
Suitable
Driver

Device
Removed

StopDevice StartDevice

Device
Running

Device Not
Present

RemoveDevice /
SurpriseRemoval

Adding High-Availability Functionality

Operating in a Redundant Host architecture places additional responsibilities on device drivers
beyond those issues required to function in anormal Hot Swap environment. This section covers
particular issues that a Redundant Host device driver designer needs to be aware of when
implementing their design.

The Redundant Host architecture leverages the Hot Swap driver interface to enable Ultra-Quick
switchovers. To do thisthe Hot Swap Manager views a domain ownership change as a multi-card
Hot Swap event. When a Host loses ownership of abus segment its Hot Swap Manager issues a
stream of stop device messages that attempts to place the backplane devicesinto a known quiesced
state. The device drivers on the Destination Host arein aknown state. By using the described High
Availability driver model the Destination Host device drivers are able to assume control in an
almost instantaneous manner.

Additional measures need to be taken to protect against inadvertent backplane interrupts and bus-
mastering activities by devices on the segment in question. These additional measures are
completely transparent operations to the device drivers since the Hot Swap Manager in the kernel
handles them. All adevice driver needs to be concerned with is being able to gracefully suspend
and resume interaction with the device or devices it controls.

Each operating system that supports Hot Swap does so in a unique way. The specific function
callbacks, number of callbacks, and level of control vary between operating system
implementations. However, al Hot Swap implementations are based on the stated driver model
described in Section 5.1.1, “Device Driver States’ on page 32. The driver states can be classified
into the following generic functions:;

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 33

Download from Www.Somanuals.com. All Manuals Search And Download.

u
High Availability CompactPCI Device Drivers Intel e

5.1.2.1

5.1.2.2

34

Add Device

* Resume Operations

Suspend Operations
* Remove Device

Add Device

Add Deviceisthe device driver call made by the Hot Swap Manager either when an asserted
ENUM signa is detected or during the kernel load time. The Add Device callback execution
indicates to a device driver that an instance of a device that the driver can control has been
detected. The driver should perform any internal structure initialization, but should not attempt to
initialize the device.

Thisiswhere device driver design on a Redundant Host architecture capable device branches from
common device driver practices. Normally during the Add Device callback the driver initializesthe
device. During the Add Device execution in a Redundant Host architecture, the device cannot be
assumed to be physically visible to the Host making the Add Device call.

The Intel® Redundant Host architecture supplies a PCl Configuration Space Spoofing mechanism
that provides the Host with the ability to query the configuration of backplane devices, whether or
not the devices are physicaly visible. In this manner a device driver can query the information
required to allocate the appropriate resources. Any operations that require direct accessto the
backplane device may only occur in the Resume Operations and Suspend Operations callbacks.

Resume Operations

The kernel calls the Resume Oper ations function only when the Host has visibility of the
CompactPCI backplane device. It is during this operation that the device driver can perform direct
device accesses. This may entail initializing the device, querying current device status, or smply
placing the device into a known state. It is normally in the Resume Operations callback that the
Interrupt Service Routine (ISR) is connected or chained to the appropriate interrupt signal.

As stated earlier, to the driver should not attempt to access a device unless the Host has physical
visibility to the device. If an accessis attempted to anon-owned or non-visible CompactPCl device
then a system crash may occur.

This also appliesto kernel accesses to non-visible devices. An example of thisisif the kernel
detects an interrupt and executes the | SRs attached to what could be a shared interrupt signal. The
device driver normally doesthis by querying the controlled device. If the deviceisnot visible to the
guerying Host, then a system crash may occur.

Two ways to help protect against this situation are:
1. Connect the device driver’s ISR only when the Resume Operation callback is executed
2. Make a sanity check at the top of the ISR to seeif the device isvisible to the executing Host.

The Intel HA SDK provides akernel level query function that can be used by device driversto
determine if the Host controls the bus segment on which the CompactPCI device resides.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

INtal.

5.1.2.3

5.1.2.4

5.1.2.5

High Availability CompactPCI Device Drivers

Suspend Operations

The counterpart to the Resume Operation callback is the Suspend Operation. The kernel calls the
Suspend Operation callback function for each device for which aHost islosing visibility. It cannot
be assumed that the driver retains visibility to the backplane device during the Suspend Operation
execution. The Suspend Operation should first disconnect the device's interrupt service routine.
The driver should then do whatever normalizing of internal device structuresis required so that, if
necessary, the driver will bein a position to inherit control of the device again.

Remove Device

The Remove Device function is called when a CompactPCl backplane device is extracted from the
chassis. Itisinthisroutine that al structures that were created and/or initialized during the Add
Device call are deallocated. All internal cleanup of the extracted device needs to occur with the
awareness that the driver cannot assume visibility to the device. Thisis not a mgjor issue since the
Hot Swap event detected and ENUM remediation occurs in the Hot Swap Manager, which is
transparent to the device driver.

Driver Synchronization

Redundant Host aware device drivers might need to handle driver synchronization. In a Redundant
Host architecture two device drivers are assigned to control asingle device. Device control may be
transitioned from one Host to the other at any moment so the device driver needsto be dynamic in
its design.

Part of this dynamic state capability is made more manageable through inter-Host synchronization.
In this case the synchronization mechanism is an inter-Host communications channel. The inter-
driver synchronization infrastructure can be used for various synchronization strategies, among
these are data mirroring, check pointing, and device heart beating.

The Intel HA SDK has defined a Receive Message callback and a Send Message API routine. The
kernel executes the Receive Message callback whenever a message is destined to a backplane
device driver from the reciprocating driver on the opposite Host. The contexts of these

synchroni zation messages are transparent to both the sending and receiving Hosts. The messages
themselves are decoded and used internally by the receiving device drivers. Thereis a possibility
that the message received is no longer valid for the following reasons:

* The system masters are not run in lockstep and do not access shared memory

* A delay can occur between the time a message is sent and the time the device driver isable to
consume the message

To minimize this possibility of being out of sync, the drivers should limit themselvesto
synchronizing mostly state or database related information. For example, adevice driver may want
to share the usage of a specific | P address across Redundant Hosts. In this case a driver packages
up the IP address and uses the Send Message API to transmit the packet to the Redundant Host.
The Receiving Host decides which device driver is to receive the packet and calls the registered
Receive Message callback routine. The device driver then decodes the message packet

appropriately.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 35

Download from Www.Somanuals.com. All Manuals Search And Download.

u
High Availability CompactPCI Device Drivers Intel e

5.2

36

Summary

Theintent of the HA CompactPCl device driver model isto leverage the native device driver
infrastructure to supply arobust Hot Swap capability while limiting the non-proprietary device
driver modifications. In order for a device driver to function effectively in a Redundant Host
environment the driver should at a minimum implement the Hot Swap device driver infrastructure
detailed in the following appendices of this manual:

* Appendix C, “HSK Device Driver Interface for VxWorks* 5.4”

¢ Appendix D, “RH Device Driver Interface for Linux* 2.4”

The specific implementation details vary between the supported operating systems, so choose the
correct driver model for the operating system for which you are developing. To best leverage the
Redundant Host capabilitiesit is recommended that some level of synchronization be implemented
using the supplied device driver messaging infrastructure.

It is not necessary to implement all the supplied Redundant Host features for backplane device
driversto function in aHigh Availability architecture. There are some device implementations that
require a device or bus segment to be reset when Host ownership changes. Using either the
PICMG* 2.12 Redundant Host API or the IPM1 API system information extension documented in
the next chapter allows the bus segment to automatically reset the specified domain after the new
Host has inherited the bus segment. To use these functions, see the Redundant Host switchover and
slot information related APIs and the IPMI API for default Host activities.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Redundant Host API 6

6.1 Intel-Specific APIs

6.1.1 RhSetHostName

Prototype:
RH_API_DEFHSI_STATUS
RhSetHostName(
IN RH_HANDLE Handle,
IN uint32 Host,
IN char HostName]])
Arguments:
Handle - The handle of the current session
Host - The host number
HostName - The character buffer where the host name is stored as a O-terminated
character string
Return Value:

HSI_STATUS SUCCESS - returned in the case of success
RH_INVALID_HANDLE - invalid session handle
HSI_STATUS NOT_SUPPORTED - returned if this function is not supported by theinfrastructure

Other HSI_STATUS values - if errors occurred during execution of this function such as
nonexistent host

Synopsis:

This function sets the symbolic name of the specified host; this should be some kind of network
name (for example, NETBIOS name or TCP/IP host name) that can be used to establish a network
connection to that host.

6.1.1.1 RhGetHwDestinationHostAndReset
Prototype:

HSI_STATUS
RhGetHwDestinationHostAndReset(
IN RH_HANDLE Handle,
IN uint32 SourceHost,
IN uint32 Domain,
OUT uint32 * pDestinationHost,

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 37

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2

38

OUT BOOL*pbReset);

Arguments:

Handle - the handle of the current session

SourceHost - the number of the source host

Domain — the domain number

pDestinationHost pointer to the variable receives the number of the host that should own
the specified domain if the source host fails and hardware-initiated
switchover takes place for it

pbReset pointer to the variablereceivesthe state of the flag that indicates whether
the specified destination host will perform areset if the host receives
control of a segment

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:

This function gets the destination host that owns the specified domain and the reset flag value if a
hardware-initiated switchover takes place due to the failure of the source host.

Redundant Host PICMG* 2.12 APIs

This chapter describes a supplementary API for domain management and switchover from the
application level.

Theinterface described in this section isimplemented as a set of functions exported to an
application.

These functions allow the client to perform the following operations:
* |nitialize and terminate an instance of thisinterface
* Enumerate the hosts, domains and slotsin the system
* Get information about devicesin slots
* |nitiate domain switchovers among hosts
* Enable and disable notifications regarding switchover operations

* Specify actions that result from hardware-initiated alarms and control notifications about
alarms

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

6.2.1

Redundant Host API

The following topics specify each of the interface functions.

Definitions and Types

The following definitions are provided for terms used in the remaining topics of this chapter.

RH (Redundant Host) System. An RH system consists of two or more hosts and one or more
domains. An ownership relationship is defined between hosts and domains: hosts own domains. At
any given moment of time, no more than one host can own one domain. If a host owns the domain,
software on the host has access to PCI devicesin (or behind) the PCI dots of the domain.

RH (Redundant Host) Infrastructure. An RH Infrastructure is an implementation of the Redundant
Host PICMG 2.12 APIsfor a specific RH System. It provides the Redundant Host API defined in
this topic to applications. Multiple RH Systems of the same type may be serviced by asingle
infrastructure.

Domain. A Domain is aspecific collection of peripheral PCI slots whose ownership can be
transferred as a group among system hosts. PCI-PCI bridges can populate these slots. Therefore, a
domainis generally acollection of PCI trees (aforest). Domainsin the system are identified by 32-
bit arbitrary quantities — domain numbers. The number of domains in the system and their domain
numbers are assumed static during system operation.

Host. A Host is an active entity in the system that can run software that uses this API. Hosts in the
system are identified by 32-bit arbitrary quantities — host numbers. The number of hostsin the
system and their host numbers are assumed static during the system operation. The host number
RH_NO_DESTINATION_HOST means “no host” and is used, for example, to say that no host
owns the specified domain.

Domain parent bridge. A PCI-PCI bridgeis called the parent for adomain if al slots behind that
bridge belong to that domain and all slots of the domain are behind that bridge.

Domain slot path. The slot path for a PCI device is the sequence of device/function numbers from
this device up the PCI treeto its root through the sequence of PCI-to-PCI bridges. Usually (but not
necessarily) each domain has a domain parent bridge. When a host owns the domain, the slot path
of the domain parent bridge is the domain slot path with respect to the host. Domain slot path may
be defined with respect to ahost even if that host does not own the domain, provided that the
domain is guaranteed to have the same slot path each timeit is switched over to that host.

Switchover. Switchover is changing ownership of a domain from one host to another.

Destination Host. Thisisthe host that receives the specified domains owned by a particular host if
a hardware-initiated switchover takes place on the owning host.

Available Host. A host isavailableif it can own domains and communicate with the rest of the RH
system. A host is unavailable, for example, if it is switched off or isin some special mode in which
it isisolated from the rest of the RH system.

Owning Host. The host that currently owns a domain.

Current Host. The host on which the specific API call has been made.

Root Bus. The root bus number of the PCI tree this dot belongsto. ThisvalueisO for thefirst or a

single PCI tree. For additional PCI trees, thisvalueisimplementation-dependent, but is guaranteed
to be non-zero.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 39

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

RH Instance ID. A host can be a member of several RH systems simultaneously, similar to multi-
homed hosts in networking. In that case, the application can use the Redundant Host API from
several RH infrastructures. To select a specific RH system, the application uses the RH Instance ID
when obtaining the handle to the RH system via RhOpen. RH Instance ID is an implementation-
defined character string. To alow potential coexistence of multiple RH infrastructures on the same
host, the RH Instance 1D should consist of the RH infrastructure identifier and the identifier of a
specific instance of the RH system (if multiple RH System instances are serviced by asingle
infrastructure).

The C definition of the associated types used by thisinterfaceis given below:

t ypedef enum {
I NACTI VE,
DI SCONNECTED,
DI SCONNECTI NG,
CONNECTED,
CONNECTI NG } RH _DOVAI N_SWC_STATE;

t ypedef enum {
M NOR_ALARM
MAJOR_ALARM
CRI TI CAL_ALARM } RH_ALARM SEVERI TY;

t ypedef enum {
ACTI ON_I GNORE ,
ACTI ON_NOTI FY = 1,

ACTI ON_SW TCHOVER = 2,
ACTI ON_RESTART = 4 } RH_ALARM ACTI ON;

t ypedef enum {
NOTI FI CATI ON_DOVAI N_STATE_CHANGCE,
NOTI FI CATI ON_SW TCHOVER,
NOTI FI CATI ON_SW TCHOVER_REQUEST,
NOTI FI CATI ON_UNSAFE_SW TCHOVER,
NOTI FI CATI ON_ALARM } RH_NOTI FI CATI ON_TYPE;

t ypedef enum {
FULLY_COOPERATI VE,
PARTI ALLY_COOPERATI VE,
FORCED,
HOSTI LE,
HARDWARE_| NI TI ATED } RH_SW TCHOVER _TYPE;

typedef struct PHYSICAL_SLOT_| D_STRUCT {
ui nt 32 Shel f1 D,
uint32 Slotl D

} PHYSI CAL_SLOT_I D,

typedef void (*RH_DOVAI N_STATE_ CALLBACK) (
I N ui nt 32 Donmai n,

RH DOVAI N SWC STATE State,

ui nt 32 Requesti ngHost,

ui nt 32 Desti nati onHost,

ui nt 32 Ti neout ,

BOOLEAN Per si st ,

|
|
|
|
|
IN void *pContext);

2zZ2Z2zZzzZ22

40 High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

u
Int6I® Redundant Host API

typedef void (*RH_SLOT_STATE_CALLBACK) (
I N ui nt 32 Donai n,
I'N PHYSI CAL_SLOT_I D Sl ot,
I'N RH_DOVAI N_SWC_STATE St at e,
IN void *pContext);

t ypedef void (*RH_SW TCHOVER CALLBACK) (
I'N ui nt 32 Host,
I'N ui nt32 Donmi n,
IN void *pContext);

t ypedef BOOLEAN (*RH_SW TCHOVER REQUEST CALLBACK) (
I' N ui nt 32 Requesti ngHost,
I'N ui nt 32 DestinationHost,
I'N ui nt 32 Donui n,
IN void *pContext);

typedef enum {
RESET_REQUI RED,
RESET_NOT_REQUI RED,
UNKNOWN } RH_SLOT_NEEDS_RESET;

typedef struct RH_SLOT_DESCRI PTOR_STRUCT {
ui nt 32 Si ze;
PHYSI CAL_SLOT_I D Physi cal Sl ot ;
ui nt 8 PhysSl ot Dept h;
ui nt 32 Owni ngHost ;
ui nt 16 BusNumnber ;
ui nt 8 Devi ceNunber;
ui nt 8 Functi onNunber;
ui nt 16 Vendor | D;
ui nt 16 Devi cel D;
ui nt 16 Subsyst enVendor | D;
ui nt 16 Subsyst emnl D,
ui nt 8 Revi sionl D,
ui nt 8 Based ass;
ui nt 8 Subd ass;
uint8 Proglf;
ui nt 8 Header Type;
RH SLOT_NEEDS RESET NeedsReset;
ui nt 16 Root Bus;
char SlotPath[1];
} RH_SLOT_DESCRI PTOR, *PRH_SLOT_DESCRI PTOR;

typedef void (*RH_UNSAFE_SW TCHOVER CALLBACK) (
I'N ui nt32 Donmi n,
I'N RH_SW TCHOVER TYPE Swi t chover Type,
I N BOOLEAN Sl ot Reset Supported,
I'N ui nt 32 Unsaf eSl ot Count,
I'N OUT RH_SLOT_DESCRI PTOR *pUnsaf eS| ot Descri pt ors,
IN void *pContext);

typedef void (*RH_ALARM CALLBACK) (
I'N ui nt 32 Host,
I'N RH_ALARM SEVERI TY Al ar nType,
IN void *pContext);

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

41

[]
Redundant Host API Intel®

6.2.2

6.2.2.1

42

t ypedef void * RH_HANDLE;

Initialization/Termination

RhEnumeratelnstances
Prototype:

HSI_STATUS

RhEnumeratel nstances(
OUT char *plnstancel D,
IN uint32 Instancel DL ength,
OUT uint32 *pActua Size);

Arguments:

plnstancel D - pointer to the character buffer where the list of RH Instance IDs are
stored as a sequence of null-terminated character strings, terminated by
two consecutive null characters

Instancel DLength the size of the buffer; if thissizeistoo small for the output, this function
fails.

pActual Size - this variable receives the actual size of the returned list of RH Instance
IDs, in characters, including the terminating two null characters. In the
case of the error code HSI_STATUS INSUFFICIENT_BUFFER
returned, thisisthe minimal required size of the buffer.

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS NO_DATA _DETECTED
no known RH systems exist for the current host

HSI_STATUS INSUFFICIENT_BUFFER
returned if the buffer plnstancel D istoo small to store the list of RH
Instance IDs

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported on the current host

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function can be used to enumerate existing RH Systems on the current host, before doing an
actual RhOpen call. Thelist of RH Instance IDs for RH Systems in which the current host
participatesis stored in the output buffer. Each RH instance ID in thelist is a null-terminated
character string that designates one RH system and can be used as a parameter in a subsequent call
to RhOpen to specify the RH system that the application wants to work with. RH Instance IDs are
stored in the buffer sequentially, separated by one null character. Two consecutive null characters
designate the end of thelist.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

u
Int6I® Redundant Host API

An RH infrastructure that implements this function shall return thelist of RH Instance IDs only for
those RH Systemsthat it services.

If multiple RH infrastructures are present on the current host, an intermediate layer of functionality
between the application and infrastructures may be defined, that implementsthis function. If thisis
the case, that intermediate layer should consolidate together the lists of RH Instance IDs returned
by separate RH infrastructures and present the consolidated list to the application as the result of
the call to RhEnumeratel nstances. The intermediate layer may change the RH Instance IDs
returned by separate infrastructures, qualifying them with textual identifiers of the corresponding
infrastructures.

6.2.2.2 RhOpen
Prototype:

HSI_STATUS

RhOpen(
IN char *Instanceld OPTIONAL,
OUT RH_HANDLE *pHandle);

Arguments:

Instanceld - an RH Instance I D that chooses aspecific RH system instancein the case
where the calling host is attached to more than one RH system. Thisis
an implementation-defined string. This parameter can be omitted
(specifiedasNULL). Inthat case, the caller will be using the RH system,
selected by default (defined by the first RH Instance ID, returned by
RhEnumeratel nstances).

pHandle — pointer to the variable that holds the connection handle to the
infrastructure of type RH_HANDLE. Thistypeis generally opaque, but
istypedef’ ed to the handle type for the target OS.

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid or unrecognized RH Instance ID

HSI_STATUS NOT_SUPPORTED -
if the specified RH system is not available

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:
Thisfunction initializes the connection between the application program and the RH infrastructure.
It should be called in the beginning to initialize communication between the application and the

infrastructure. This function creates a handle to the RH system and returns it to the application
program. This handle is to be used in subsequent requests.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 43

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.2.3

6.2.2.4

44

The current host may be attached to several RH systems. In that case, the parameter Instance |ID
should be used to specify the RH system that the application wants to work with. Specifying NULL
as the value of the parameter Instancel D chooses the default RH system. If the function
RhEnumeratel nstances is supported, the default RH system shall be the one designated by thefirst
RH Instance ID in thelist returned by RhEnumeratel nstances.

An RH infrastructure implementing this function shall recognize RH Instance IDs only for those
RH systems that it services.

If multiple RH infrastructures are present on the current host, an intermediate layer of functionality
between the application and infrastructures may be defined, that implementsthis function. If thisis
the case, that intermediate layer should choose the RH infrastructure that providesthe API services
to the application, based on the value of the parameter Instancel D. When doing this, the
intermediate layer may processthe Instancel D before passing it to theinfrastructure (removing, for
example, the textual identifier of the infrastructure).

RhClose
Prototype:

HSI_STATUS
RhClose (IN RH_HANDLE Handle);

Arguments:

Handle - the handle to the infrastructure obtained via RhOpen.

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:
This function closes the connection between the application program and the RH infrastructure and

destroys the handle. It should be called at the end to gracefully terminate the communication
between the application and the infrastructure.

RhGetlnstancelD
Prototype:

HSI_STATUS
RhGel nstancel D(
IN RH_HANDLE Handle,
OUT char *plnstancel D,
IN uint32 Instancel DLength,

OUT ULONG *pActuaSize);

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

6.2.3

6.2.3.1

Redundant Host API

Arguments:

Handle— the handle of the current session

plnstancel D — pointer to the character buffer wherethe RH Instance I D associated with
the given handle is stored as a null-terminated character string

Instancel DLength the size of the buffer; if thissizeistoo small for the output, thisfunction
fails.

pActual Size - this variable receives the actua size of the returned Instance ID; in the
case of the error code HSI_STATUS_INSUFFICIENT_BUFFER
returned, thisisthe minimal required size of the buffer.

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

HSI_STATUS _INSUFFICIENT_BUFFER
returned if the buffer plnstancel D istoo small to store the RH Instance
ID

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Thisfunction returnsthe RH Instance ID for the given session handle. Thisisacharacter string that
identifies the specific RH system with which the application communicates viathe RH API in the
specified session. The format of this string is implementation-dependent.

If multiple RH infrastructures are present on the current host, an intermediate layer of functionality
between the application and infrastructures may be defined, that implementsthisfunction. If thisis
the case, that intermediate layer should ensure that the value returned to the application can be
used to get access to the same RH System via RhOpen (for example, the intermediate layer may
prepend the string returned to the application by the textual identifier of the infrastructure).

Domain and Host Information API

RhGetDomainCount
Prototype:

HSI_STATUS

RhGetDomainCount(
IN RH_HANDLE Handle,
OUT uint32 *pCount);

Arguments:

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 45

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.3.2

46

Handle— the handle of the current session

pCount — pointer to the variable that receivesthe current number of domainsin the
system

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:

This function returns the number of domainsin the RH system that can be owned by the hostsin
the system.

RhGetDomainNumbers
Prototype:

HSI_STATUS
RhGetDomai nNumbers(
IN RH_HANDLE Handle,
OUT uint32 *pDomainNumbersArray,
IN uint32 ArraySize,
OUT uint32 *pActua Size);

Arguments:
Handle - the handle of the current session
pDomainNumbersArray — pointer to the array where the list of domain numbersis placed

ArraySize - the size (in items of type uint32) of the buffer initially provided for the
array by the caller

pActualSize - pointer to the variable where the actual number of itemsin thelistis
stored (even if theinitial sizeistoo small and the function returns the
error HSI_STATUS INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

HSI_STATUS INSUFFICIENT_BUFFER
returned if the buffer provided for the array by the caller istoo small; in
that case, thearray isn’t filled in but the location pointed by pActual Size
is set to the correct value to assist the caller in subsequent buffer
allocation.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function retrieves the list of numbers of known domains that comprise the RH system. Each
domain number is an arbitrary uint32 value.

Before the call, the caller should allocate a buffer that can accommodate a sufficient number of
uint32 values, and pass its address in the pDomainNumbersArray parameter. The parameter
ArraySize should be set equal to the size of the buffer in uint32 items. The domain count returned
from “RhGetDomainCount” can be used as the value of this parameter. On return, the function
popul ates the buffer with the array of domain numbersfor all domainsin the system, and placesthe
actual number of returned domain numbersinto the output parameter * pActual Size. If the specified
ArraySizeistoo small, the function returns status HSI_ STATUS INSUFFICIENT_BUFFER, and
doesn’t populate the buffer, but still sets the parameter * pActual Size to the required size of the
buffer.

6.2.3.3 RhGetDomainOwnership
Prototype:
HSI_STATUS
RhGetDomai nOwnership(
IN RH_HANDLE Handle,
IN uint32 Domain,
OUT uint32 *pOwningHost);
Arguments:
Handle — the handle of the current session
Domain — the domain number
pOwningHost pointer to the variable that stores the number of the host (if any) that
owns this domain; value RH_NO_DESTINATION_HOST means “ not
owned by any host”
Return Value:
HSI_STATUS SUCCESS
returned in the case of success
HSI_STATUS INVALID_PARAMETER
invalid session handle
Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:
This function returns the current owning host for the specified domain.
6.2.3.4 RhGetDomainSlotPath
Prototype:
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 47

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

48

HSI_STATUS

RhGetDomainSlotPath (
IN RH_HANDLE Handle,
IN uint32 Host,

IN uint32 Domain,
OUT uint16 * pRootBus,

OUT char *pOutSlotPath,
IN uint32 SlotPathLength,
OUT ULONG *pActuaSize);
Arguments:
Handle— the handle of the current session
Host - the target host number
Domain — the domain number
pRootBus — pointer to the variable where the infrastructure stores the root bus
number of the PCI tree of thisdomain. ThisvaueisO for the first or
single PCI tree. For additional PCI trees, this value isimplementation-
dependent, but is guaranteed to be non-zero.
pOutSl otPath pointer to the buffer where the slot path of the root bridge of the specified
domain is written as a null-terminated string
SlotPathLength the size of the buffer; if thissizeistoo small for the output, this function
fails. The size of the maximum possible output is 513 characters (for the
longest dlot path in the system with 256 buses plus the null termination
character).
pActuaSize - thisvariable receivesthe actual size of the returned dot path; in the case
of HSI_STATUS_INSUFFICIENT_BUFFER, thisisthe minimum
required size of the buffer.
Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the domain number isinvalid

HSI_STATUS INSUFFICIENT_BUFFER
returned if SlotPathLength istoo small

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function returns the slot path of the domain parent bridge for the specified domain with
respect to the target host.

Thisfunction is guaranteed to return successfully only if the target host owns the specified domain.
If the target host does not own the specified domain, the function fails, unless the infrastructure
knows in advance what slot path the domain will have when owned by the target host. This slot
path must not be affected by any switchovers that may take place in the RH system before the
target host actually acquires the specified domain.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

6.2.3.5

6.2.3.6

Redundant Host API

The dlot path is stored as a null-terminated sequence of two-character groups. Each group describes
one item of the dot path and represents the number (DeviceNumber * 8 + FunctionNumber) for the
corresponding PCI-PCI bridge in hexadecimal. The two hexadecimal digits of this number are
represented by two charactersfromtheset ‘0°..’9", ‘A’ ..’ F'.

RhGetDomainSlotCount
Prototype:

HSI_STATUS
RhGetDomainS| otCount(
IN RH_HANDLE Handle,
IN uint32 Domain,
OUT uint32 * pPhysS|otCount);

Arguments:

Handle— the handle of the current session

Domain — the domain number

pPhysSlotCount pointer to the variable where the number of physical slotsin thisdomain
isplaced

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function returns the number of physical slotsin the specified domain. This number can be
used to specify the size of the buffer for the physical slot numbersin a subsequent call to
RhGetDomainSlots.

RhGetDomainSlots
Prototype:

HSI_STATUS
RhGetDomainSlots(
IN RH_HANDLE Handle,
IN uint32 Domain,
OUT PHYSICAL_SLOT_ID *pSlotNumbersArray,
IN uint32 ArraySize,
OUT uint32 *pActuaSize);

Arguments:

Handle the handle of the current session

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 49

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.3.7

50

Domain the domain number

pSlotNumbersArray pointer to the array where the list of slot numbers for the specified
domainis placed

ArraySize the size (in items of type PHY SICAL_SLOT_1D) of the buffer initially

provided for the array by the caller

pActualSize pointer to the variable where the actual number of itemsinthelistis
stored (even if the initial size istoo small and the function returns the
error HSI_STATUS INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

HSI_STATUS _INSUFFICIENT_BUFFER
returned if the buffer provided for the array by the caller istoo small; in
that case, thearray isn’t filled in but the location pointed by pActua Size
isset to correct value to assist the caller in subsequent buffer allocation.

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Thisfunction retrievesthelist of physical slot numbersfor the specified domain. Each physical slot
number is an arbitrary (but system-wide, unique) combination of ShelflD and SlotlD values.

Before the call, the caller should alocate a buffer that can accommodate a sufficient number of
PHYSICAL_SLOT_ID structures, and pass its address in the pSlotNumbersArray parameter. The
parameter ArraySize should be set equal to the size of the buffer in PHYSICAL_SLOT _ID items.
The dot count returned from “ RhGetDomainSlotCount” can be used as the value of this parameter.
On return, the function popul ates the buffer with the array of slot numbers for @l slotsin the
domain, and places the actual number of returned slot numbersinto the output parameter
*pActualSize. If the specified ArraySize istoo small, the function returns status

HSI_STATUS INSUFFICIENT_BUFFER, and doesn’t populate the buffer, but still setsthe
parameter * pActual Size to the required size of the buffer.

RhGetSlotDomain

Prototype:

HSI_STATUS

RhGetSlotDomain(
IN RH_HANDLE Handle,
IN PHYSICAL_SLOT_ID PhysSlot,
OUT uint32 *pDomain);

Arguments:

Handle the handle of the current session

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

6.2.3.8

6.2.3.9

Redundant Host API

PhysSlot the physical slot number (represented as combination of Shelf ID and
Slot ID)

pDomain pointer to the variable where the number of the domain is placed

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

Other implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Get the domain that owns the specified slot. This function is used to retrieve the number of the
domain to which the specified physical slot currently belongs.

The physical slot isrepresented by its Shelf ID and the Slot ID inside the shelf.

RhGetCurrentHostNumber
Prototype:

HSI_STATUS

RhGetCurrentHostNumber(
IN RH_HANDLE Handle,
OUT uint32 *pHost);

Arguments:
Handle the handle of the current session

pHost pointer to the variable where the current host number is placed

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Thisfunction returns the number of the current host in an RH system (that is, the host on which this
function has been called).

RhGetHostCount

Prototype:

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 51

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.3.10

52

HSI_STATUS
RhGetHostCount(
IN RH_HANDLE Handle,
OUT uint32 *pHostCount);
Arguments:
Handle the handle of the current session
pHostCount pointer to the variable where the host count is placed
Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function gets the number of hostsin the system. This function can be used to obtain the total
number of hostsin aRH system.

RhGetHostNumbers
Prototype:

HSI_STATUS
RhGetHostNumbers(
IN RH_HANDLE Handle,
OUT uint32 * pHostNumbersArray,
IN uint32 ArraySize,
OUT uint32 *pActua Size);

Arguments:
Handle the handle of the current session
pHostNumbersArray pointer to the array where the list of host numbersis placed

ArraySize - the size (in items of type uint32) of the buffer initially provided for the
array by the caller

pActual Size - pointer to the variable where the actual number of itemsinthelistis
stored (even if theinitial sizeistoo small and the function returns the
error HSI_STATUS INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

HSI_STATUS INSUFFICIENT_BUFFER
returned if the buffer provided for the array by the caller istoo small; in
that case, thearray isn't filled in but the location pointed by pActual Size
isset toacorrect valueto assist the caller in subsequent buffer allocation.

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function retrieves the list of numbers of known hosts that comprise the RH system. Each host
number is an arbitrary uint32 value.

Before the call, the caller should allocate a buffer that can accommodate a sufficient number of
uint32 values, and passits addressin the pHostNumbersArray parameter. The parameter ArraySize
should be set equal to the size of the buffer in uint32 items. The host count returned from
“RhGetHostCount” can be used as the value of this parameter. On return, the function popul ates
the buffer with the array of host numbers for al hosts in the system, and places the actual number
of returned host numbersinto the output parameter * pActual Size. If the specified ArraySize istoo
small, the function returns status HSI_STATUS INSUFFICIENT_BUFFER, and doesn’'t popul ate
the buffer, but still sets the parameter * pActual Size to the required size of the buffer.

6.2.3.11 RhGetHostName
Prototype:
HSI_STATUS
RhGetHostName(
IN RH_HANDLE Handle,
IN uint32 Host,
OUT char *pOutHostName,
IN uint32 HostNameL ength,
OUT ULONG *pActuaSize);
Arguments:
Handle the handle of the current session
Host the host number
pOutHostName pointer to the character buffer where the host name is stored as a null-
terminated character string
HostNamel ength the size of the buffer; if thissizeistoo small for the output, thisfunction
fails.
pActual Size - this variable receives the actua size of the returned host name; in the
case of the error code HSI_STATUS INSUFFICIENT_BUFFER
returned, thisis the minimal required size of the buffer.
Return Value:
HSI_STATUS SUCCESS
returned in the case of success
HSI_STATUS INVALID_PARAMETER
invalid session handle
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 53

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.3.12

54

HSI_STATUS INSUFFICIENT_BUFFER
returned if the buffer OutHostName is too small to store the host name

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function returns the symbolic name for the specified host. Thisis somekind of a network
name (for example, NETBIOS name or TCP/IP host name) that can be used to establish a network
connection to that host. This allows the hosts to communicate with each other over the network.

RhSetHostAvailability
Prototype:

HSI_STATUS

RhSetHostAvailahility(
IN RH_HANDLE Handle,
IN uint32 Host,
IN BOOLEAN Available);

Arguments:

Handle the handle of the current session

Host the host number

Available the new availability status of the host. Setting this argument to FALSE
means that the host is brought into “isolation mode” in which it cannot
own domains and cannot accept new domains via switchover. The host
should not have any owned domains when its availability statusis set to
FALSE.

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle, or invaid target host number, or
Available=FAL SE and the target host owns domains

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Thisfunction changes the availability status of the target host for the RH infrastructure. Setting this
status to FAL SE brings the host into “isolation mode” in which the host cannot own domains and
cannot participate in domain switchovers. For such a host, the function RhGetHostAvailability

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

returns FALSE. This mode can be used for configuration purposes, for example, to update system
software on the host. Setting the status to TRUE brings the host back from the isolation mode to the
state in which it can own and acquire domains.

If the parameter Availableis FALSE, the target host must not own any domains when this function
iscalled.

6.2.3.13 RhGetHostAvailability
Prototype:
HSI_STATUS
RhGetHostAvailability(
IN RH_HANDLE Handle,
IN uint32 Host,
OUT BOOLEAN *pAvailable);
Arguments:
Handle the handle of the current session
Host the host number
pAvailable pointer to the variable that receives a Boolean value: TRUE if the
specified host is currently available and can own domains, FALSE
otherwise (if the host is switched off or isolated from the rest of RH
system).
Return Value:
HSI_STATUS SUCCESS
returned in the case of success
HSI_STATUS INVALID_PARAMETER
invalid session handle
HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure
Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:
This function can be used to determine whether the specified host in an RH system is up and
running and can own domains. Returning * pAvailable=FAL SE means that the specified host
currently does not participate in RH activities and cannot own domains (for example, is switched
off or runsin aspecia “isolation mode” or is unavailable due to some other reason).
The method of determining the availability status of the host is implementation-dependent. For
example, theinfrastructure may be able to determine that the host is physically present but does not
have its inter-host communication queuesinitialized appropriately. In that case, it is considered not
available. In other implementations, there may be a specific hardware register on the host that is
visible to other hosts and has a bit that specifies host availability for RH activities (1=available,
O=not available). Other mechanisms are possible.
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 55

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.3.14

6.2.4

6.2.4.1

56

RhGetDomainAvailabilityToHost
Prototype:

HSI_STATUS
RhGetDomainAvailability ToHost(
IN RH_HANDLE Handle,
IN uint32 Host,
IN uint32 Domain,
OUT BOOLEAN *pAvailable);

Arguments:

Handle the handle of the current session

Host the host number

Domain the domain number

pAvailable pointer to the variable that receives a Boolean value: TRUE if the
specified host can own the specified domain, FAL SE otherwise.

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Thisfunction is used in asymmetric RSS systems where some domains can be owned by some
hosts but not by other hosts (for example, due to architectural constraints). This function returns a
Boolean value (via pAvailable) that indicates whether the specified host can own the specified
domain.

Slot Information API

RhGetPhysicalSlotinformation
Prototype:

HSI_STATUS
RhGetPhysical Slotl nformation(
IN RH_HANDLE Handle,
IN PHYSICAL_SLOT_ID PhysSlot,
OUT RH_SLOT_DESCRIPTOR *plnfoBuffer,
IN uint32 InfoBufferSize,
OUT uint32 *pActua Size);

Arguments:

Handle the handle of the current session

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

PhysSlot obtains information for given physical ot number

plnfoBuffer pointer to the buffer where the information is placed

InfoBufferSize the size (in bytes) of the buffer initially provided for the array by the
caler

pActuaSize pointer to the variable where the required size of the buffer is stored

(evenif theinitial sizeistoo small and the function returns the error
HSI_STATUS INSUFFICIENT _BUFFER).

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

HSI_NO_SUCH_DEVICE
if the specified dot is empty

HSI_STATUS_INSUFFICIENT_BUFFER
returned if the information buffer provided by the caller istoo small; in
that case, the buffer isn't filled in but thelocation pointed by pActua Size
isset to acorrect valueto assist the caller in subsequent buffer allocation.

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function retrieves information about the device in the specified physical dot. If the device
consists of several PCI functions, several information records are placed in the buffer, one for each
PCI function. The following information is provided in each record, all of type
RH_SLOT_DESCRIPTOR:

Size Thisisthe size of aparticular RH_SLOT_DESCRIPTOR value
including the variable-length SlotPath field.

Device addressing attributes:

Physical Slot The number of the physical dot in the format (shelf-ID, physical-dot-
ID); the device described by this descriptor resides in this dot

PhysSlotDepth The number of bridging level s between this device and the physical slot;
thisvalueis O for this call (since this call returns information about
devices directly placed in the physical slots)

OwningHost The number of the host that currently owns the domain this device
belongsto
RootBusNumber The PCI bus number of the root bus of the PCI hierarchy the device

residesin; is O for single-root PCI hierarchies. Thisvalueis 16 bit to
accommodate possibl e future extensionsto PCI that allow morethan 256
PCI busesin the system

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 57

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.4.2

58

SlotPath The dlot path from the root bus to the device. The ot path is stored asa
null-terminated sequence of two-character groups. Each group describes
one item of the slot path and represents the number (DeviceNumber * 8
+ FunctionNumber) for the corresponding PCI-PCI bridgein
hexadecimal. Thetwo hexadecimal digits of thisnumber are represented
by two charactersfromtheset ‘0'..’9", ‘A’..F'.

BusNumber The bus number for the device. Thisvalueis 16 bit to accommodate
possible future extensions to PCI that allow more than 256 PCI busesin
the system

DeviceNumber The device number for the device

FunctionNumber The function number for the device

Device configuration attributes (all based on PCI configuration space attributes):

Vendor| D/Devicel D/RevisionlD
| dentifies the manufacturer of the device that provides the PCI interface
for the dot, the specific device product among those made by that
manufacturer, and the revision level of that device.

SubsystemVendor| D/Subsysteml D
I dentifies the manufacturer of the board and the specific board product
among those made by that manufacturer.

BaseClass/SubClass/Progl F
I dentifies the type of device and its programming interface

HeaderType - Identifies the layout of the second part of the pre-defined header of the
device that provides the PCI interface for the dot (for example, O for
conventional PCI device, 1 for PCI-PCI bridge).

The field NeedsReset indicates whether this device inits current state needs to be reset if
switchover takes place. Thevalue RESET_NOT_REQUIRED in thisfield means one of the
following things:

* Thedeviceisalready prepared for switchover.
* Thedeviceisnotin use.

* Thedriver for the device is switchover-aware and is able to correctly bring it into a safe state
after the switchover.

The value UNKNOWN means that the infrastructure does not know whether or not the device
needs reset.

RhGetSlotChildInformation
Prototype:

HSI_STATUS

RhGetSl otChildl nformation(
IN RH_HANDLE Handle,
IN PHYSICAL_SLOT_ID PhysSlot,
IN char *pSlotPath,

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

In

tel.

Redundant Host API

OUT RH_SLOT_DESCRIPTOR *plnfoBuffer,
IN uint32 InfoBufferSize,
OUT uint32 *pActuaSize);

Arguments:

Handle the handle of the current session

PhysSlot the physical dot number below which the devicesin question are nested

pSlotPath the slot path to the parent bridge for the devices

plnfoBuffer pointer to the buffer where the information about devicesis placed

InfoBufferSize the size (in bytes) of the buffer initially provided for the array by the
caler

pActualSize pointer to the variable where the required size of the buffer is stored
(evenif theinitia sizeistoo small and the function returns the error
HSI_STATUS INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle

HSI_NO_SUCH_DEVICE
if there are no child devices below the specified bridge

HSI_STATUS INSUFFICIENT_BUFFER
returned if the information buffer provided by the caller istoo small; in
that case, the buffer isn't filled in but thelocation pointed by pActua Size
isset toacorrect valueto assist the caller in subsequent buffer allocation.

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Thisfunction retrieves information about child devices bel ow the specified bridge that occupiesthe
specified physical dot or is nested below it. The bridge is specified by the input parameter
SlotPath.

The following information is provided for each device asan RH_SLOT_DESCRIPTOR structure;

Size Thisisthe size of aparticular RH_SLOT_DESCRIPTOR vaue
including the variable-length SlotPath field.

Device addressing attributes:

Physical Slot The number of the physical slot in the format (shelf-ID, physical-dlot-
ID); the device described by this descriptor is nested bel ow this slot

PhysSlotDepth The number of bridging levels between this device and the physical dot.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 59

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

60

OwningHost The number of the host that currently owns the domain this device
belongsto
RootBusNumber The PCI bus number of the root bus of the PCI hierarchy the device

residesin; is O for single-root PCI hierarchies. Thisvalueis 16 hit to
accommodate possible future extensionsto PCI that allow more than 256
PCI busesin the system.

SlotPath The slot path from the root busto the nested device. The slot path is
stored as a null-terminated sequence of two-character groups. Each
group describes one item of the slot path and represents the number
(DeviceNumber * 8 + FunctionNumber) for the corresponding PCI-PCI
bridge in hexadecimal. The two hexadecimal digits of this number are
represented by two charactersfromtheset ‘0'..’9', ‘A'..'F.

BusNumber The bus number for the device. Thisvalueis 16 bit to accommodate
possible future extensions to PCI that allow more than 256 PCI busesin
the system.

DeviceNumber The device number for the device

FunctionNumber The function number for the device

Device configuration attributes (all based on PCI configuration space attributes of a PCI device
nested within the slot):

Vendor| D/Devicel D/RevisionI D
| dentifies the manufacturer of the device that provides a nested PCI
interface within the dot, the specific device product among those made
by that manufacturer, and the revision level of that device.

SubsystemVendor| D/Subsysteml D
I dentifies the manufacturer of a subsystem nested within the slot (say, a
PMC module) and the specific subsystem product among those made by
that manufacturer.

BaseClass/SubClass/Progl F
I dentifies the type of nested PCI device and its programming interface

HeaderType
Identifies the layout of the second part of the pre-defined header of the
nested PCI device (for example, O for aconventional PCI device, 1 for a
PCI-PCI bridge.

The field NeedsReset indicates whether this device in its current state needs to be reset if
switchover takes place. Thevalue RESET_NOT_REQUIRED in thisfield means one of the
following things:

* Thedeviceisalready prepared for switchover.
* Thedeviceisnotin use.

* Thedriver for the device is switchover-aware and is able to correctly bring it into a safe state
after the switchover.

The value UNKNOWN means that the infrastructure does not know whether the device needs reset
or not.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

6.2.5

6.2.5.1

6.2.5.1.1

Redundant Host API

This function can be used to enumerate devices nested below physical slotsif a PCI-PCl bridge
occupies the physical slot. To get information about all devices at the next nesting level, this
function should be called with the physical slot number and slot path to the immediate parent
bridge. This dlot path is taken from the slot information structure for the immediate parent. To
enumerate devicesimmediately nested below the bridge in the physical dot, the caller should pass
the slot path from the slot information structure obtained via RhGetPhysical Sl otl nformation.

The returned information is represented by the array of structures of variable length. Each structure
describes one device located immediately below the parent PCI-PCI bridge. Thetotal Iength of the
array isreturned in the location pointed by pActua Size. If some of the information structures
identify corresponding devices as PCI-PCI bridges, the caller can go deeper and enumerate the PCI
devices below that bridge using this function.

Switchover API

Switchover Scenarios and Theory of Operation

Fully Cooperative Switchover

In the cooperative switchover scenario, before giving up control over adomain, the owning host
first prepares the PCI devices on thisdomain for switchover by gracefully shutting down operation
on them and stopping the device drivers working with these devices. This operation is called
software disconnection. This step is taken to ensure that the PCI devices appear to the new owner
in aknown state and that no transactions in progress are | ost.

The exact meaning of software disconnection depends on the devices in the domain and their
drivers. For device driversthat are not switchover-aware, software disconnection means shutdown
of the corresponding devices and removal of all their software representations (device objects and
so forth). Switchover-aware drivers may use “warmer” methods of preparation for switchover,
keeping the device active to some degree during the switchover but preventing it from doing any
damage to the new owning host immediately after the switchover (for example, preventing
outstanding DMA transactions from this device to the host during the switchover).

Cooperative switchover can be initiated either by the owning host (in which case it voluntarily
gives up control of thisdomain), or by the new owner of the domain, or by some third-party host.
In the last two cases, an inter-host communication channel is used to request the owning host to
initiate software disconnection. In all cases, software disconnection isinitiated by calling the
RhPrepareForSwitchover function.

Once started, software disconnection can be rejected by software (if, for example, aPCl devicein
the domain performs an important operation that cannot be interrupted). Software disconnection
can also be | eft pending for along time (for example, awaiting completion of an important
transaction). The function RhPrepareForSwitchover is asynchronous and does not wait for
completion of software disconnection. The current software connection state, associated with the
domain, can be used to track the progress of the software disconnection operation.

Theinitia software connection state of the domain is INACTIVE. For adomain in the normal
state, the software connection state is CONNECTED. When software disconnection isinitiated for
adomain, the corresponding state becomes DISCONNECTING and stays DISCONNECTING
while software disconnection is pending for the domain. When software disconnection completes
successfully, the state goes to DISCONNECTED. If software disconnection is terminated
unsuccessfully, the state goes back to CONNECTED.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 61

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.5.1.2

6.2.5.1.3

62

Software connection is the inverse action to software disconnection: it starts the drivers for PCI
devicesin the domain and resumes normal operation. When initiated for adomain in the
DISCONNECTED state, it brings the domain to CONNECTED state through the intermediate
CONNECTING state. Software connection can be used to cancel the effect of software
disconnection for adomain during switchover preparation. For example, suppose that two domains
should be switched over simultaneously in an atomic transaction; software disconnection
succeeded for the first domain but was rejected for the second domain. As aresult, the switchover
is not possible and the first domain should be brought back into operation by software connection.

The same states apply to separate slots in the domain. They can be retrieved on a per-slot basis by
separate polling functions or the caller can subscribe for asynchronous notifications about slot state
changes. This makes it possible to invoke partially cooperative switchovers, in which the
switchover isinitiated when software disconnection is complete for some (moreimportant) devices
in the domain but not yet for other (less important) devices. These last devices should be reset
during or immediately after the switchover to prevent possible damage to the new owning host.

The requesting host may specify atimeout for software disconnection. This value, expressed in
milliseconds, serves as an indication to the owning host of the time interval during which the
software disconnection should be completed. The requesting host indicates that after the expiration
of the timeout it intends to either abandon the switchover or perform forced switchover.

After the software disconnection of the relevant domains is complete, switchover isinitiated to
change ownership of the domains. To trigger the switchover, the RhPerformSwitchover function
should be called.

After the switchover, software connection is automatically initiated for the relevant domains on the
receiving hosts. It is not necessary to call any functions after the switchover to software connect the
received domains.

Partially Cooperative Switchover

With this type of the switchover, software disconnection takes place for some but not all of the
devicesin the domain. It may be considered that some devices need to be prepared for switchover
while other devices may be switched over without preparation.

Another possible scenario is that some devices are considered “ more important” and the others
“lessimportant”. The switchover isinitiated as soon as software disconnection compl etes for
“moreimportant” devices, without waiting for completion of preparation for “lessimportant”
devices.

In all these cases, at the moment of switchover some devices are prepared for switchover, while
other devices are not and may need to be brought into aknown initia state after the switchover.

After the switchover, software connection is automatically initiated for the relevant domains on the
receiving hosts; so it is not necessary to call any functions after the switchover to software connect
the received domains.

Forced Switchover

In the forced switchover scenario, the domains are not software disconnected before the
switchover, so device operation is not quiesced and for the device drivers and other software on the
resigning host the PCI devices physicaly disappear, possibly in the middle of transactions. PCI
devices are generally in an unknown state after the switchover. However, if the parameter Reset is
used in the RhPerformSwitchover function, the PCI buses of the domain are reset, which bringsthe
devicesinto the known initial state on the new owner host.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

6.2.5.1.4

6.2.5.1.5

6.2.5.2

Redundant Host API

Hence, forced switchover is potentially destructive for the owning host and should be used with
care.

To perform forced switchover, it is sufficient to call the RhPerformSwitchover function. Forced
switchover can beinitiated either by the owning host (in which case it voluntarily gives up control
of thisdomain), or by the new owner of the domain, or by some third-party host. In the last case, an
inter-host communication channel may be needed to request one of the immediately participating
hosts to perform the switchover.

After the switchover, software connection is automatically initiated for the relevant domains on the
receiving hosts.

Hostile Switchover

Even in the case of aforced switchover request, there may be a possibility for the owning host to
intercept the hardware switchover request and prevent it via hostile actions with respect to the
destination host (for example, powering it off). An additional parameter (“Hostile”) to the
RhPerformSwitchover function can be used to perform unconditional (hostile) switchover without
any possibility for the owning host to prevent it.

After the switchover, software connection is automatically initiated for the relevant domains on the
receiving hosts.

Hardware-Initiated Switchover

Thistype of switchover isinitiated by hardware in the case of a hardware-initiated alarm (for
example, awatchdog timer expiration) on the owning host. The new owning hosts for domainsin
this case are specified in advance via RhSetHwDestinationHost function. The parameter Reset in
this function controls whether the PCI buses of the domain are reset after the switchover. If this
parameter is TRUE, the PCI buses of the domain are reset after the hardware-initiated switchover,
which brings the devicesinto aknown initial state on the new owning host.

The RhSetHwDestinationHost function can be called either on the owning host or on some third-
party host. In the last case, an inter-host communication channel may be needed to request the
owning host to register the destination host in hardware.

During hardware-initiated switchover, device operation is not quiesced and for the device drivers
and other software on the resigning host the PCI devices disappear, possibly in the middle of
transactions. However, thisis not very important for thistype of switchover, since the usual reason
for switchover in this case is a malfunction of the owning host that requires some corrective
actions, possibly including host reset.

After the switchover, software connection is automatically initiated for the relevant domains on the
receiving hosts.

RhPrepareForSwitchover
Prototype:

HSI_STATUS

RhPrepareForSwitchover(
IN RH_HANDLE Handle,
IN uint32 *pDomains,
IN uint32 DomainCount,

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 63

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

64

IN uint32 DestinationHost,
IN uint32 Timeout,
IN BOOLEAN Persist);

Arguments:
Handle the handle of the current session

pDomains pointer to the array of numbers of the domainsto disconnect; all domains
must be owned by the same host

DomainCount the number of elementsin the array of domain numbers

DestinationHost the number of the destination host for the intended switchover of the
specified domains; value RH_NO_DESTINATION_HOST meaning
that no host owns the domains.

Timeout thetimeinterval (in milliseconds) that the requestor agreesto wait for the
completion of disconnection. After thistime expires, therequestor either
forcesthe switchover or abandonsit. This parameter isadvisory and can
be ignored by the target host. The special value 0 means that the
requestor does not impose any time constraints to the software
disconnection.

Persist this parameter specifies what should be done in the case that software
disconnection is not immediately possible for some slots. TRUE means
that the target host should continue repeating attempts to software
disconnect offending devices until software disconnection succeeds for
all devices or the software disconnection request is cancelled by the
requestor. FAL SE meansthat the software disconnection of all requested
domains should fail in that case and devices that have been software
disconnected already should be reconnected.

Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS REQUEST_DENIED
returned if the software disconnection request issued by the current host
has been denied

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:

This function requests adomain software disconnection on the owning host in preparation for a
switchover. The exact meaning of software disconnection depends on the devicesin the domains
and their drivers. For the device drivers that are not switchover-aware, this means shutdown of the
corresponding devices and removal of all devices software representations (device objects and so
forth). Switchover-aware drivers may use “warmer” methods for preparation for switchover.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

This function just initiates the software disconnection and does not wait for its completion. The
function RhGetDomai nSwConnectionStatus can be used to track the progress of the pending
disconnection.

In the cooperative switchover scenario, the domains should be software disconnected before the
switchover; this guarantees that the former owning host software does not crash because of devices
unexpectedly disappearing and that device activity does not crash the newly owning host
immediately after the switchover.

The function can be called on a host that does not own the specified domains; in that case, the
request may be forwarded to the owning host via an applicable inter-host communication channel.
However, all specified domains must be owned by the same host.

The caller can specify how urgent the software disconnection request is by using the Timeout
parameter. This value specifies the time interval (in milliseconds) during which the owning host
should try to complete the software disconnection. The caller assumes that after this timeout
expires:

* |t stopswaiting for the software disconnection to complete

* |t either abandons the switchover attempt or initiates aforced switchover that may be partially
cooperative if software disconnection succeeds for some device(s) by that time.

6.2.5.3 RhCancelPrepareForSwitchover
Prototype:
HSI_STATUS
RhCancel PrepareFor Switchover(
IN RH_HANDLE Handle,
IN uint32 *pDomains,
IN uint32 DomainCount);
Arguments:
Handle— the handle of the current session
pDomains — pointer to the array of numbers of the domains to connect; all domains
must be owned by the same host
DomainCount the number of elementsin the array of domain numbers
Return Value:
HSI_STATUS SUCCESS returned in the case of success
HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist
HSI_STATUS REQUEST _DENIED
returned if the software connection request issued by the current host has
been denied
HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure
Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 65

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.5.4

66

Synopsis:

This function requests domain software connection. It initiates software connection for the
specified domains:

* Startup of al devicesin the domain
* Creation of corresponding software representation for devices (device objects and so forth)

If software disconnection isin progress for this domain, this function cancels the software
disconnection

This function just initiates the software connection—it does not wait for its completion. The
function RhGetDomainSwConnectionStatus can be used to poll the progress of the pending
connection. Alternatively, the notification functions provide a callback-based notification
approach. See Section 6.2.6, “Notification, Reporting and Alarms” on page 70 for more
information on these functions.

In the cooperative switchover scenario, this function should be called for the domains that have
been software disconnected if the switchover is being cancelled (for example, because another
domain specified in the switchover request cannot be software disconnected).

The function can be called on a host that does not own the domain; in that case, the request may be
forwarded to the owning host via an applicable inter-host communication channel. However, the
same host must own al specified domains.

RhGetDomainSwConnectionStatus
Prototype:

HSI_STATUS
RhGetDomai nSwConnecti onStatus(
IN RH_HANDLE Handle,
IN uint32 Domain,
OUT RH_DOMAIN_SWC_STATE *pState);

Arguments:

Handle— the handle of the current session

Domain — the number of the domain to query state
pState — pointer to the variable that receives the state
Return Value:

HSI_STATUS SUCCESS
returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

Get domain software connection status. This function returns the current state of the specified
domain with respect to software connection/disconnection. There exist two stable
(DISCONNECTED, CONNECTED) and two transitional (DISCONNECTING, CONNECTING)
states.

This function can be used during a cooperative switchover to track progress of a pending software
connection or disconnection request.

The function can be called on a host that does not own the domain.

6.2.5.5 RhGetSlotSwConnectionStatus
Prototype:
HSI_STATUS
RhGetSlotSwConnectionStatus(
IN RH_HANDLE Handle,
IN PHYSICAL_SLOT_ID Slot,
OUT RH_DOMAIN_SWC_STATE *pState);
Arguments:
Handle— the handle of the current session
Slot — the physical slot number to query state for
pState — pointer to the variable that receives the state
Return Value:
HSI_STATUS SUCCESS returned in the case of success
HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified slot does not exist
HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure
Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:
Get physical slot software connection status. This function returns the current state of the specified
slot with respect to software connection/disconnection. There exist two stable (DISCONNECTED,
CONNECTED) and two transitional (DISCONNECTING, CONNECTING) states.
This function can be used during a cooperative switchover to track progress of a pending software
connection or disconnection request on a per-dot basis.
The function can be called on ahost that does not own the domain to which the dot belongs.
6.2.5.6 RhPerformSwitchover
Prototype:
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 67

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.5.7

68

HSI_STATUS

RhPerformSwitchover(
IN RH_HANDLE Handle,
IN uint32 DestinationHost,
IN uint32 *pDomains,

IN uint32 DomainCount,

IN BOOLEAN Resgt,
IN BOOLEAN Hostile);

Arguments:

Handle — the handle of the current session

DestinationHost the number of the host that should own the domains after the switchover;
value RH_NO_DESTINATION_HOST means*no host should own the
specified domains’

pDomains — the array of domain numbers that should be taken over. Passing NULL
as this parameter requests that all existing domains should be switched
over to the destination host.

DomainCount - the number of itemsin the array pDomains.

Reset — if TRUE, the PCI buses of domains are reset after the switchover

Hostile - if TRUE, the switchover is performed in a hostile way (the owning host
is not given any opportunity before the switchover to be notified and to
prevent it).

Return Value:

HSI_STATUS SUCCESS returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or any of the specified domains do not exist, or
wrong parameters are specified (for example, DomainCount=0 and
Domains!=NULL).

HSI_STATUS REQUEST_DENIED
the switchover request for the specified domains by the current host has
been denied

HSI_STATUS NOT_SUPPORTED
returned if this function with the specified set of parametersis not
supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function performs the switchover. It is called on a host that currently owns the specified
domains or on some other host to request switchover of the specified domains to the destination
host. If the parameter Reset is TRUE, the corresponding domains areinitially reset after the
switchover by the new owning host.

RhSetHwDestinationHost

Prototype:

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

HSI_STATUS
RhSetHwDestinationHost(
IN RH_HANDLE Handle,
IN uint32 SourceHost,
IN uint32 *pDomains,
IN uint32 DomainCount,
IN uint32 DestinationHost,
IN BOOLEAN Reset);

Arguments:

Handle — the handle of the current session

SourceHost — the number of the host for which domain destination is specified

pDomains — the array of domain numbers identifying the group of domainsthat is
passed to the specified destination host if the source host fails and
hardware-initiated switchover takes place for it

DomainCount the size of the array pDomains

DestinationHost the number of the host that owns the specified domainsif the source host
fails and hardware-initiated switchover takes place for it; value
RH_NO_DESTINATION_HOST means “no host owns the domains’

Reset if TRUE, the PCI buses of domains are reset after the switchover

Return Value:

HSI_STATUS SUCCESS returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or invalid parameters (wrong or hon-existent host
or domain numbers)

HSI_STATUS REQUEST DENIED
the request for the specified domains by the current host has been denied

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Thisfunction is used to specify the destination host that obtains specified domains if a hardware-
initiated switchover occurs dueto the failure of the source host. In the case of such failure, domains
owned by that host should be transferred to some other host; this function specifies the destination
host on a per-domain group basis.

If this function is not called before the hardware-initiated switchover actually takes place, the
domain is either passed to some predefined host or left unattached to any host. This predefined
arrangement is specified by some entity beyond the scope of this specification (like BIOS or
hardware default). However, the function RhGetHwDestinationHost can be used to obtain this
predefined arrangement, even if RhSetHwDestinationHost has not yet been called for this domain/
host pair.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 69

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.5.8

6.2.6

6.2.6.1

70

RhGetHwDestinationHost
Prototype:

HSI_STATUS
RhGetHwDestinationHost(
IN RH_HANDLE Handle,
IN uint32 SourceHost,
IN uint32 Domain,
OUT uint32 * pDestinationHost);

Arguments:

Handle — the handle of the current session

SourceHost - the number of the source host

Domain — the domain number

pDestinationHost pointer to the variable receives the number of the host that should own
the specified domain if the source host fails and hardware-initiated
switchover takes placefor it

Return Value:

HSI_STATUS SUCCESS returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:
This function gets the destination host that owns the specified domain if a hardware-initiated

switchover takes place due to the failure of the source host.

Notification, Reporting and Alarms

RhEnableDomainStateNotification
Prototype:

HSI_STATUS
RhEnableDomainStateNotification(
IN RH_HANDLE Handle,
IN RH_DOMAIN_STATE_CALLBACK DomainCallback,
IN RH_SLOT_STATE_CALLBACK SlotCallback OPTIONAL,
IN void *pContext);

Arguments:

Handle — the handle of the current session

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

DomainCallback pointer to the callback function that tracks state of the domain

SlotCallback - pointer to the optional callback function that tracks state of separate slots
during software connection and disconnection.

pContext — an opague context pointer; passed unchanged to the callback function.

Return Value:

HSI_STATUS SUCCESS returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function establishes a callback that is called when the software connection state of one of the
domains changes. The callback function is called with the domain number and the new state as
parameters. Another parameter, pContext, is passed unchanged from the function that establishes
the callback to the callback itself and can be used to pass some context information.

Four additional parameters, “RequestingHost”, “DestinationHost”, “Timeout” and “ Persist,” are
passed to the domain state notification callback when software disconnection is requested for the
domain and the domain state becomes DISCONNECTING. They are passed unchanged from the
parameter list for the RhPrepareForSwitchover function.

Values of these parameters are not meaningful when the new domain state is different from
DISCONNECTING.

The parameter SlotStateCallback, if specified as non-NULL, should be an address of the slot state
change notification callback. This callback is called when the state of a specific slot in the domain
changes and allows the caller to track software connection and disconnection on a per-slot basis.

Thisfunction can be used to get notification about the progress of a pending software connection or
disconnection request during a cooperative switchover.

The function can be called on ahost that does not own the specified domain.

6.2.6.2 RhEnableSwitchoverNotification
Prototype:
HSI_STATUS
RhEnableSwitchoverNotification(
IN RH_HANDLE Handle,
IN RH_SWITCHOVER_CALLBACK Callback,
IN void * pContext,
IN BOOLEAN Systemwide);
Arguments:
Handle— the handle of the current session
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 71

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

6.2.6.3

72

Callback — pointer to the callback function
Context — an opague context pointer; passed unchanged to the callback function.
Systemwide— aBooleanflag; if set to TRUE, notification happens for each switchover

even if the current host is neither the source nor the destination of the
switchover; if set to FALSE, the host is notified only of those
switchoversin which it participates.

Return Value:
HSI_STATUS SUCCESS returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function establishes the callback that is called when any domain is switched over from one
host to another. The callback function is called with the new owner host number and the domain
number as parameters. Another parameter, pContext, is passed unchanged from the function that
establishes the callback to the callback itself and can be used to pass some context information.

An application may subscribe for notifications about all domain switchoversin the system by
setting parameter Systemwide to TRUE.

RhEnableSwitchoverRequestNotification
Prototype:

HSI_STATUS

RhEnableSwitchoverNotification(
IN RH_HANDLE Handle,
IN RH_SWITCHOVER_REQUEST CALLBACK Callback,
IN void *pContext);

Arguments:

Handle - the handle of the current session

Callback — pointer to the callback function

pContext — an opague context pointer; passed unchanged to the callback function.
Return Value:

HSI_STATUS SUCCESS returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

6.2.6.4

Redundant Host API

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function establishes the callback that is called when an attempt is made to take over any
domain from the current host. The callback functionis called with the requesting host number, new
owning host number, and the domain humber as parameters. Another parameter, pContext, is
passed unchanged from the function that establishes the callback to the callback itself and can be
used to pass some context information.

If the switchover request callback is called, the requested switchover isn't successfully completed
in hardware until the callback returns. The callback can request the infrastructure to prevent the
requested switchover from happening by returning FALSE. In that case, the infrastructure may
perform hostile actions to the new owning host (for example, power it off).

RhEnableUnsafeSwitchoverNotification

Prototype:

HSI_STATUS

RhEnableUnsafeSwitchoverNoaotification(
IN RH_HANDLE Handle,
IN RH_UNSAFE_SWITCHOVER CALLBACK Callback,
IN void *pContext);

Arguments:

Handle— the handle of the current session

Callback — pointer to the callback function

pContext — an opaque context pointer; passed unchanged to the callback function.
Return Value:

HSI_STATUS SUCCESS returned in the case of success

HSI_STATUS INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function establishes the callback that is called when a new domain is acquired by the current
host. In that case, some (or al) devices in the domain may be in an unsafe state. To prevent
immediate corruption of the new owning host after the switchover, abuslock is usually
implemented in RH systems. Thislock prevents outgoing transactions from the domain devicesto
the host and interrupts from the domain devices. However this lock should not be held for along
time, but should be cleared by software soon after the switchover to allow normal operation of
domain devices.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 73

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

74

The corresponding callback can be used to handle this situation. The callback is called with the bus
lock held. Parameters to the callback include alist of entries identifying domain devices in unsafe
states. These devices should be reset before the domain can be software connected and the device
drivers can be started. However, reset may not be necessary for a specific device if it is known that
this device is harmless for the system or the device driver can bring the device into a safe state
before the buslock is cleared.

If registered, the callback is called after a switchover even if no devices are considered unsafe by
the RH infrastructure. In that case, the list of entries, passed as a parameter, is empty.

The callback has the following prototype:

typedef void (*RH_UNSAFE_SW TCHOVER CALLBACK) (
I N ui nt 32 Donmai n,
I'N RH_SW TCHOVER _TYPE Swi t chover Type,
I N BOOLEAN S| ot Reset Support ed,
I'N ui nt 32 Unsaf eS| ot Count ,
I'N OUT RH_SLOT_DESCRI PTOR *pUnsaf eS| ot Descri pt ors,
IN void *pContext);

The callback has the following parameters:

Domain - the number of the domain that has been acquired by the current host
SwitchoverType the switchover type
SlotResetSupported the Boolean flag that indicates whether the infrastructure supports per-

slot resets on the domain
UnsafeSlotCount the number of descriptors for unsafe slots provided with the call

pUnsafeSlotDescriptors the array of descriptors, each of which describes one slot that contains a
device in unsafe state

pContext - the opaque context pointer passed unchanged from
RhEnableUnsafeSwitchoverNaotification

Each descriptor describes a device that is directly installed in aphysical dot or nested below a
physical dotinthe PCI hierarchy (if the physical slot is occupied by a PCI-PCI bridge device), and
has the following fields:

Size - thisisthe size of the structure including the variable-length SlotPath
field. To get to the next structure in the array, the caller should add this
value to the address of the current structure.

Device addressing attributes:

Physical Slot the number of the physical slotintheformat (shelf-1D, physical-dot-I1D);
the device described by this descriptor resides in this slot or below this
slot

PhysSlotDepth The number of bridging levels between this device and the physical dot;

if the device occupies the physical slot, thisvalueis 0, otherwise it
indicates is the depth of the device below the physical slot

OwningHost is set to the number of the current host

RootBusNumber the PCI bus number of the root bus of the PCI hierarchy the device
residesin; is O for single-root PCI hierarchies. Thisvaueis 16 bit to
accommodate possiblefuture extensionsto PCI that allow morethan 256
PCI busesin the system

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host API

SlotPath - the slot path from the root bus to the device; represented as a null-
terminated character string

BusNumber - the bus number for the device. Thisvalueis 16 bit to accommodate
possible future extensions to PCI that allow more than 256 PCI busesin
the system

DeviceNumber the device number for the device

FunctionNumber the function number for the device

Device configuration attributes:

Attributes from Vendorl D to Header Type represent the PCI configuration space attributes of the
device with the same names.

The field NeedsReset has a special meaning. It is set to RESET_REQUIRED or UNKNOWN
before the callback is called. The callback should set thisfield to RESET_NOT_REQUIRED or
RESET_REQUIRED on return.

The callback should set thisfield to RESET_NOT_REQUIRED if it considers that no reset is
necessary for this device before releasing the bus lock (for example, if the device can be set to a
safe state by the device driver or isin a safe state already).

The callback should set thisfield to RESET_REQUIRED if it considersthat the reset is necessary
for the device.

No descriptors are submitted for empty slots or for the slots occupied by devices that the
infrastructure considers safe for the host.

If a PCI-PCI bridge occupies some physical slot, and some devices below this bridge are in unsafe
state, both descriptors for the bridge and for the devices below it in unsafe state are present. In the
array, the descriptor for the bridge precedes descriptors for the devices below it.

The actions of the infrastructure after the callback returns are specified by the following rules:

* If the parameter SlotResetSupported = FAL SE (the infrastructure does not support per-slot
resets), and at least one descriptor has NeedsReset = RESET_REQUIRED, the whole domain
is reset before rel easing the bus lock.

* Otherwise, for each physical dot inthe domain, if SlotResetSupported = TRUE, and thereisa
descriptor for the given physical slot in the array with NeedsReset = RESET _REQUIRED,
this physical dot isreset.

* Otherwise, if thereis a PCI-PCI bridge devicein the given physical slot, and there is at least
one descriptor in the array for a device below this bridge (or for this bridge itself) with
NeedsReset = RESET_REQUIRED, this physical slot is reset.

Asaconseguence, thereisno reset if the callback clears NeedsReset in all descriptors submitted to
it.

6.2.6.5 RhDisableNotification
Prototype:
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 75

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host API Intel®

76

HSI_STATUS
RhDisableNotification(
IN RH_HANDLE Handle
IN RH_NOTIFICATION_TY PE NotificationType);

Arguments:

Handle - the handle of the current session

NotificationType this enumeration specifies the type of notifications to disable
Return Value:

HSI_STATUS SUCCESS returned in the case of success

HSI_STATUS INVALID PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function disables the notification callback that has been previously established via one of the
RhEnable...Notification functions. The specific type of notifications to disable is specified by the
parameter NotificationType.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Hot Swap API

See the Intel® NetSructure™ Hot Swap Kit for Linux 2.4 Software Manual for a detailed

description of the provided Hot Swap APl supported by this software installation. While the Hot
Swap Kit manual is specifically tailored for aLinux installation, the Hot Swap APl detailed in this

manual isidentical to the VxWorks* implementation.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

77

Hot Swap API

78

This page intentionally left blank.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

IPMI API

8.1 ImbOpenDriver

Prototype:

int imbOpenDriver(void)

Parameters:

None

Returns:

Int- 0 for Fail and 1 for Success, sets hDevice
Description:

Establish alink to the IMB driver.

8.2 imbCloseDriver

Prototype:

void imbCloseDriver()
Parameters:

None

Returns:

None

Description:

Close alink to the IMB driver.

8.3 iImbDeviceloControl
Prototype:
static BOOL imbDevicel oControl (
HANDLE dummy_hDevice,
DWORD dwloControlCode,
LPVOID [pvinBuffer,
DWORD cblnBuffer,

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

79

IPMI API

8.4

80

LPVOID [pvOutBuffer,
DWORD cbOutBuffer,
LPDWORD [pcbBytesReturned,
LPOVERLAPPEDIpoOverlapped

)

Parameters:

dummy_hDevice - handle of device

dwloControlCode - control code of operation to perform

[pvinBuffer - address of buffer for input data

cbinBuffer - size of input buffer

|pvOutBuffer - address of output buffer

cbOutBuffer - size of output buffer

IpcbBytesReturned - address of actual bytes of output

IpoOverlapped - address of overlapped struct

Returns:

BOOL - FALSE for fail and TRUE for success. Same as standard NTOS call asit
also sets Ntstatus.status.

Description:

Simulate NT imbDeviceloControl using Unix calls and structures

iImbSendTimedl2cRequest

Prototype:

ACCESN_STATUS imbSendTimedl 2cRequest (
I2CREQUESTDATA *pl2CReq,
Int timeOut,
BYTE * pRespData,
int* pRespDatal_en,
BYTE * pCompCode
)

Parameters:

pl2Creq - 1°C request

timeOut - how long to wait, mSec units

respDataPtr - where to put response data

respDatalen - size of response buffer/size of returned data
completionCode - reguest status from xMC

Returns;

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

8.5

8.6

IPMI API

ACCESN_STATUS - ACCESN_OK else error status code
Description:

Sends a request to an 12C device

iImbSendlpmiRequest

Prototype:

ACCESN_STATUS imbSendI| pmiRequest (
IMBPREQUESTDATA *plmbReq,
BYTE* pRespData,
int* pRespDatal_en,
BYTE * pCompCode,
BOOL bWaitForResponse

)

Parameters:

plmbReq, - request info and data

pRespData, - where to put response data
pRespDatal_en, - how much response data thereis
pCompCode, - request status from destination controller
bWaitForResponse - Wait for aresponse

Returns:
ACCESN_STATUS ACCESN_OK €else error status code

Description:

Sends a request to an 1°C device

ImbGetAsyncMessage

Prototype:

ACCESN_STATUS imbGetAsyncM essage (
ImbRespPacket * pMsg,
DWORD *pMsgLen,
ImbAsyncSeq * pSegNo

)

Parameters:

pMsg - response packet

pMsgLen - IN - length of buffer, OUT - msg len

pSegNo - previoudly returned sequence number (or ASYNC_SEQ_START)

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

81

IPMI API

8.7

8.8

8.9

82

u
intel.
Returns:
ACCESN_STATUS - ACCESN_OK else error status code

Description:

This function gets the next avail able async message with amessage ID greater than SeqNo. The
message looks like an IMB packet and the length and Segquence number are returned

ImblsAsyncMessageAvailable

Prototype:
ACCESN_STATUS imblsAsyncMessageAvailable (unsigned int eventld)

Parameters.

eventld - EventlD handle returned from imbRegi sterForAsyncM sgNotification

Returns:
ACCESN_STATUS- ACCESN_OK when message available el se error status code

Description:

This function waits for an Async Message to arrive in the queue. It blocks indefinitely until a
message arrives.

iImbRegisterForAsyncMsgNotification

Prototype:
ACCESN_STATUS imbRegisterForAsyncMsgNotification (unsigned int * handlel d)

Parameters:

eventld - Eventl D handle returned once registered

Returns
ACCESN_STATUS - ACCESN_OK else error status code

Description:

This function registers the calling application for Asynchronous notification when an SMS
message is available with the IMB driver.

imbUnregisterForAsyncMsgNotification

Prototype:

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

IPMI API

ACCESN_STATUS imbUnregisterForAsyncMsgNoatification (unsigned int * handlel d)

Parameters:

eventld - EventID handle to unregister

Returns:
ACCESN_STATUS - ACCESN_OK else error status code

Description:

This function unregisters the calling application for Asynchronous notification when an SMS
message is available with the IMB driver.

8.10 imbGetLocalBmcAddr
Prototype:
ACCESN_STATUS imbGetLocalBmcAddr (BY TE *iBmcAddr)
Parameters:
iBmcAddr - OUT - value of current local BMC address
Returns:
ACCESN_STATUS - ACCESN_OK €else error status code
Description:
This function gets the local XM C Address as determined by the driver init
8.11 iImbSetLocalBmcAddr
Prototype:
ACCESN_STATUS imbSetL ocalBmcAddr (BY TE iBmcAddr)
Parameters:
iBmcAddr - IN - value of current local xM C address
Returns:
ACCESN_STATUS - ACCESN_OK else error status code
Description:
This function is used when the xM C does not support the PICM G 2.16 GetAddressinfo IPMI
command to force the local xMC Address.
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 83

Download from Www.Somanuals.com. All Manuals Search And Download.

IPMI API

8.12

84

imbGetlpmiVersion

Prototype:

BY TE imbGetlpmiVersion()
Parameters:

None

Returns:
BYTE - Current determined IPM1 version

Description:

This function is returns the current IPMI version as either IPM1_09 VERSION,
IPMI_10 VERSION, or IPMI_15 VERSION

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Slot Control API 9

9.1 HsiOpenSlotControl
Prototype:
HSI_STATUS
HsiOpenSlotControl (
OUT HSI_SLOT_CONTROL_HANDLE *pHandle);
Arguments:
PHandle - pointer to the location where this function places the session handle for
the new session
Return Value:
HSI_STATUS SUCCESS
if successful
HSI_STATUS NO_MEMORY
returned if there is not enough memory to allocate the handle or other
internal structures
HSI_STATUS NO_SUCH_DEVICE
returned if the Hot Swap Controller can’t be found
Other HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:
Thisfunction is called by the client to open alogica session between the client and the HA Slot
Control Driver. The session handle is returned to the client from this function. In al of the
following calls related to the new session, the session handle shall be passed as one of the
parameters.
This function shall be called before calling any other functions of thisinterface.
9.2 HsiCloseSlotControl
Prototype:
HSI_STATUS
HsiCloseSlotControl (
IN HSI_SLOT_CONTROL_HANDLE Handle);
Arguments:
Handle - The session handle to close
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 85

Download from Www.Somanuals.com. All Manuals Search And Download.

Slot Control API intGI@;

9.3

9.4

86

Return Value:

HSI_STATUS SUCCESS
if successful

HSI_STATUS INVALID_PARAMETER
returned if the handle passed as a parameter isinvalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:
Thisfunction is called by aclient to terminate alogical session between the client and the Hot

Swap Controller driver, established by the call to HsiOpenSlotControl (). Upon return, the handleis
no longer valid.

HsiGetSlotCount

Prototype:
HSI_STATUS
HsiGetSlotCount(
INHSI_SLOT_CONTROL_HANDLE Handle,
OUT UINT32 *pCount)
Arguments:
Handle - The handle of the current session
pCount - Pointer to the location where the number of physical slotsis placed
Return Value:
HSI_STATUS SUCCESS

if successful

HSI_STATUS INVALID_PARAMETER
returned if the handle passed as a parameter isinvalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

A client callsthis function to retrieve the number of physical slots managed by the Hot Swap
Controller. The physical sots are the same as geographical CompactPCI addresses and are
numbered from 1 to this number, inclusive. However, the slot numbers need not be consecutive;
there may be gaps in the sequence of physical slot numbers.

HsiGetBoardPresent

Prototype:

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

9.5

Note:

Slot Control API

HSI_STATUS
Hsi GetBoardPresent(
INHSI_SLOT_CONTROL_HANDLE Handle,
IN UINT32 Slat,
OUT BOOLEAN *pPresent)
Arguments:
Handle - The handle of the current session
Slot - The physical ot number
pPresent - Pointer to the location where the board presence flag is placed: TRUE
means aboard ispresent in the slot; FAL SE meansno board ispresent in
the slot
Return value:
HSI_STATUS_SUCCESS
if successful

HSI_STATUS INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual
dot or if the handleisinvalid

HSI_STATUS NO_DATA_DETECTED
returned if the board presence status cannot be currently determined (the
slot is powered)

Other HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:

This function detects whether any board is present in the specified slot and returns the board
presence statusin the pPresent parameter. TRUE isreturned if aboard is present in the slot; FALSE
isreturned if no board is present in the slot.

According to the Hot Swap Specification, if the slot power ison, it is not possible to detect whether
the slot is occupied; this function returns status HSI_STATUS NO_DATA_DETECTED inthis
case.

HsiGetBoardHealthy

Prototype:

HSI_STATUS

Hsi GetBoardHeal thy(
INHSI_SLOT_CONTROL_HANDLE Handle,
IN UINT32 Slat,
OUT BOOLEAN *pHealthy);

Arguments:

Handle - The handle of the current session

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 87

Download from Www.Somanuals.com. All Manuals Search And Download.

Slot Control API intGI@;

9.6

88

Note:

Slot - The physical slot number

pHealthy - Pointer to the location where the board health statusis placed: TRUE
means the board is present and healthy; FAL SE means the board is not
healthy

Return value:

HSI_STATUS SUCCESS
if successful

HSI_STATUS INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual
slot or if the handleisinvalid

HSI_STATUS NO_DATA_DETECTED
returned if the board health status cannot be currently determined (the
dlot is not powered)

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function detects the health status of the board in the specified slot and returnsit in the
pHealthy parameter as alogical value. TRUE means the board is present and healthy; FALSE
means the board is either not healthy or absent.

The board health status cannot be determined if the slot power is off; this function returns status
HSI_STATUS NO_DATA_DETECTED in this case.

HsiGetSlotPower

Prototype:
HSI_STATUS
Hsi GetSlotPower(
INHSI_SLOT_CONTROL_HANDLE Handle,
IN UINT32 Slot,
OUT BOOLEAN *pPower);
Arguments:
Handle - The handle of the current session
Slot - The physical slot number
pPower - Pointer to the location where the slot power statusis placed: TRUE
means the slot power is on; FAL SE means the dot power is off
Return Value:
HSI_STATUS SUCCESS

if successful

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

9.7

9.8

Slot Control API

HSI_STATUS_INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual
dlot or if the handleisinvalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Thisfunction detects the power status of the specified slot and returnsit in the pPower parameter as
alogica value: TRUE means the slot power is on; FALSE means the slot power is off.

HsiSetSlotPower

Prototype:

HSI_STATUS

Hsi SetSlotPower(
IN HSI_SLOT_CONTROL_HANDLE Handle,
IN UINT32 Slot,
IN BOOLEAN Power);

Arguments:

Handle - The handle of the current session

Slot - The physical ot number

Power - The new power state for the slot: TRUE means ON, FAL SE means OFF

Return Value:

HSI_STATUS SUCCESS
if successful

HSI_STATUS INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual
dot or if the handleisinvalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function enables or disables power for the specified slot. The new power state of the dot is
specified by the value of the parameter Power: TRUE means switch the power on; FAL SE means
switch the power off.

HsiGetSlotReset

Prototype:

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 89

Download from Www.Somanuals.com. All Manuals Search And Download.

Slot Control API intGI@;

9.9

90

HSI_STATUS
Hsi GetSlotReset(
INHSI_SLOT_CONTROL_HANDLE Handle,
IN UINT32 Slot,
OUT BOOLEAN *pReset);
Arguments:
Handle - The handle of the current session
Slot - The physical slot number
pReset - Pointer to the location where the slot reset statusis placed: TRUE means
the dot isin thereset state; FAL SE meansthe dot isnot in the reset state
Return Value:
HSI_STATUS SUCCESS

if successful

HSI_STATUS NOT_IMPLEMENTED
returned if slot reset functionality is not implemented for the given
platform

HSI_STATUS INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual
dlot or if the handleisinvalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function detects the reset status of the specified slot and returnsit in the pReset parameter asa
logical value: TRUE meansthe dlot isin the reset state; FAL SE means the slot is not in the reset
State.

Thisfunction is optional for the Hot Swap Controller; if it is not implemented by the hardware,
HSI_STATUS NOT_SUPPORTED is returned.

HsiSetSlotReset

Prototype:

HSI_STATUS

Hsi SetSlotReset(
INHSI_SLOT_CONTROL_HANDLE Handle,
IN UINT32 Slot,
IN BOOLEAN Reset);

Arguments:

Handle - The handle of the current session

Slot - The physical slot number

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Slot Control API

Reset - The new reset state for the slot: TRUE meansthe slot is placed in the
reset state; FAL SE means the slot is taken out of the reset state

Return Value:

HSI_STATUS SUCCESS

if successful

HSI_STATUS NOT_IMPLEMENTED
returned if slot reset functionality is not implemented for the given
platform

HSI_STATUS INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual
dlot or if the handleisinvalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function sets the reset status for the specified sot. The reset status is specified by the Reset
parameter: TRUE means assert reset to the slot; FAL SE means de-assert reset to the slot.

Reset is considered a state rather than an action: that is, if aboard is put into the reset state, it
remains in the reset state until it is taken out of the reset state.

Thisfunction is optional for the Hot Swap Controller; if it is not implemented by the hardware,
HSI_STATUS NOT_SUPPORTED is returned.

9.10 HsiGetSlotM66Enable
Prototype:
HSI_API_DEF HSI_STATUS
HsiGetSl otM 66Enabl e(
IN HSI_SLOT_CONTROL_HANDLE Handle,
IN UINT32 Slot, OUT BOOLEAN *pM66Enable)
Arguments:
Handle - the handle of the current session
Slot - the physical slot number
pM66Enable - pointer to the location where the state of the M66EN line for the
specified slot isplaced (TRUE: 66 MHz operation isenabled for the dlot;
FALSE: 66 MHz operation is not enabled for the slot).
Return Value:
HSI_STATUS SUCCESS
if successful
HSI_STATUS NOT_IMPLEMENTED
returned if slot reset functionality is not implemented for the given
platform
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 91

Download from Www.Somanuals.com. All Manuals Search And Download.

Slot Control API intGI@;

9.11

92

HSI_STATUS INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual
slot or if the handleisinvalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function detects the state of the M66EN signal line for the specified dot (reflecting whether
66 MHz operation is enabled for the specified slot) and returnsit in the pM66Enable parameter asa
logical value: TRUE means that the signal is asserted (66 MHz operation is enabled for the slot);
FAL SE means that the signal is deasserted (66 MHz operation is not enabled for the slot).

This functionality is optional for the Hot Swap Controller; if it is not supported by the hardware,
HSI_STATUS NOT_SUPPORTED isreturned.

HsiSetSlotM66Enable

Prototype:

HSI_API_DEF HS|_STATUS
Hsi SetSlotM 66Enabl e(
IN HSI_SLOT_CONTROL_HANDLE Handle,
IN UINT32 Slot, IN BOOLEAN pM66Enable)

Arguments:

Handle - The handle of the current session.

Slot - The physical slot number.

M66Enable - The Boolean parameter that control s the state of the M66EN line for the
specified slot (TRUE: M66EN is not driven for the slot by the Hot Swap
Controller; FALSE: M66EN is driven low for the slot by the Hot Swap
Controller, disabling 66 MHz operation).

Return Value:

HSI_STATUS SUCCESS

if successful

HSI_STATUS NOT_IMPLEMENTED
returned if slot reset functionality is not implemented for the given
platform

HSI_STATUS INVALID_PARAMETER
returned if the physical dot number does not correspond to any actual
slot or if the handleisinvalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Slot Control API

This function controls the state of the M66EN signal line for the specified slot (reflecting whether
or not 66 MHz operation is enabled for the specified dot), depending on the value of the parameter
M66Enable. M66Enable = TRUE means that the signal line is not driven by the Hot Swap
Controller (potentially enabling 66 MHz operation for the dot); M66Enable = FAL SE means that
the signal is driven low by the Hot Swap Controller (disabling 66 MHz operation for the slot).

9.12 HsiSetSlotEventCallback
Prototype:
HSI_STATUS
Hsi SetSlotEventCall back(
IN HSI_SLOT_CONTROL_HANDLE Handle,
INHSI_SLOT_EVENT_CALLBACK Callback,
IN void *pContext)
Arguments:
Handle - The handle of the current session
Callback - Address of the callback function that is called in the case of aHot Swap
Control event. Pass NULL to cancel the callback registration.
pContext - Opague context pointer. This value is passed unchanged to the callback
function.
Return Value:
HSI_STATUS SUCCESS
if successful
HSI_STATUS INVALID_PARAMETER
returned if the arguments or handleisinvalid
HSI_STATUS NOT_SUPPORTED
returned if slot event functionality is not implemented for the given
platform
Other HSI_STATUS values
returned if other errors occurred during execution of this function
Synopsis:
This function registers or unregisters a client callback function that is called by the HA Slot
Control Driver in the case of one of the following events:
* State of one of the dlots changes: aboard isinserted or extracted, board health state changes,
etc.
* Hardware error is detected in the Hot Swap Controller.
To register the callback, the client should call this function with avalid, non-zero callback address
and an opague context pointer. To unregister the callback, the client should call this function with
NULL asthe callback address; the context pointer isignored in that case and may be any value.
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 93

Download from Www.Somanuals.com. All Manuals Search And Download.

Slot Control API intGI@;

Note:

94

The callback function has the following prototype:

VOID (*HSI_SLOT_EVENT_CALLBACK)(
IN void * pContext,
IN BOOLEAN HscError,
IN HSI_SLOT_EVENT_INFO *pSlotinfo);

The arguments have the following semantics:

pContext - Opaque context pointer. Thisisthe samevaluethat wasoriginally passed
to HsiSetSlotEventCallback().

HscError - The value TRUE indicatesthat a hardware error has been detected in the
Hot Swap Controller, and FALSE indicates a state change in one of the
dlots.

pSlotinfo - If HscError is FALSE, this argument is the pointer to the structure that

contains the slot number and the new state of the slot that has changed
itsstate. If HscError is TRUE, the value of thisargument isreserved and
undefined.

The dlot event information structure is defined as follows.

typedef struct
HSI_SLOT_EVENT_INFO_STRUCT
{
UINT32 SlotNumber;
BOOLEAN Present;
BOOLEAN Powered;
BOOLEAN Healthy;
BOOLEAN InRes«t;
} HSI_SLOT_EVENT _INFO;

with the fields specified as:

SlotNumber - the number of the slot that has changed its state
Present - the board presence status for the slot

Powered - the power status for the slot

Healthy - the health status for the board in the slot
InReset - the reset status of the slot

If Powered is TRUE, the value for Present is not valid, and that if Powered is FALSE, the value for
Healthy is not valid.

Thisfunction shall beimplemented as part of the HA Slot Control Interface on platforms where the
Hot Swap Controller can automatically detect and signal the occurrence of dot status changes.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Demonstration Utilities 10

The purpose of the demonstration utility isto demonstrate and expose the main functionality and
features of the HSSDK driver set, the Application Programming Interface (API) and the Redundant
Host (RH) capabilities of the ZT 5524 System Master CPU board. It also serves as atest tool for
exercising the APIs while acting as a programming tutorial. The functional interfaces are listed
below:

* RH API exercising

Hot Swap API exercising

Inter-host communi cations mechanism

Fault Configuration
¢ Switchover Management

* Any extraexposed status and control that is not covered in the previously mentioned APIs

10.1 Functional Description

The architecture of the RHDemo application is represented by five major functional blocks:
* User interface
* RH interface
* |PMI interface
* Hot swap interface
¢ Slot control interface

These are described in the following topics.

10.1.1 User Interface

The user interface is based on a command line interface and is menu driven. Enter a number and
press Enter to make a selection. Press M to go to the main menu, press B to go back to the previous
menu, and press Q to quit the demo.

10.1.2 RH Interface

The RADemo exercises the Redundant Host functionality exposed viathe RH interface. It supports
the PICMG 2.12 RH API. This should also be sufficient to exercise the functionality in the ZT
5524 RSS System Master board. The ZT 5524 is dynamic enough to function in multiple mode
host-domain ownership configurations. The multiple modes are:

¢ Active/Standby
* Active/Active

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 95

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Demonstration Utilities IntGI@:

10.1.2.1

10.1.2.2

10.1.2.3

10.1.2.3.1

10.1.2.3.2

10.1.2.3.3

96

* Cluster

A Standby Host isahost that does not control a bus domain. A Standby Host isreferred to as being
in Standby mode. An Active Host is a host that owns at least one bus segment. Functionality such
as software initiated handovers, hardware initiated failovers, switchovers, event reporting and
alarms are exercised.

Software Initiated Handovers

Software initiated handovers allow an active system master board to switch over to the backup host
through application software intervention. This allows the user to perform preventative
maintenance or software upgrades to one host without shutting down the entire system. During a
handover, the device drivers are allowed to quiesce activity to the devices and synchronize state
information to allow an orderly transition of a bus segment.

Hardware Initiated Failovers

Hardware initiated failovers occur when a catastrophic failure occurs on the active system master
board. The active host can then failover to the backup host or the backup host can perform a
takeover so that interruptions to system operation are minimized. Examples of catastrophic failures
are a software watchdog timeout or a detected voltage spike that may render the CPU unstable.
These events warrant a hardware-initiated failover.

Multiple Mode Capabilities

Active/Standby Mode

The Active/Standby mode is the standard Redundant Host configuration. This mode allows only
one system master CPU board to have visibility to al backplane bus segments and all the
connected PCI devices. This mode requires that the standby system master CPU board be
electrically disconnected from the backplane at the PCI-to-PCl Bridge. A PCI spoofing mechanism
isrequired for proper operation. The spoofing mechanism allows the standby host to access the PCI
configuration space of backplane devices without having direct accessto the devices. If ahost fails
and requires atakeover, one of the hosts initiates a handover or failover and upon completion the
roles of active and standby hosts are reversed.

Active/Active Mode

Active/Active mode configuration allows each board segment to control a single bus segment.
Each system master CPU board controls the clock and arbitration for its controlled or owned bus
segment. It isthrough the PCI spoofing mechanism that each system master has visibility to the bus
segment and the devices that are owned by the redundant host. In this mode if one host fails then
the redundant host can take ownership of the relinquished bus segment.

Cluster Mode

Cluster mode is a variant on the Active/Active host mode. In Cluster mode if either host fails then
the bus assigned to the failed host is unavailable for ownership transference. Thisis referred to as
bus locking. While a system is dynamically capable of transitioning between Active/Standby and
Active/Active modes, and even into a Cluster mode, it is only through a system power cycle that a
system can transition out of Cluster mode. Thisis dueto the fact that alocked bus segment may not
have PCI spoofing information consistent across multiple host domains.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
IntGI@: Demonstration Utilities

10.1.2.4 Switchover Functions

The RHDemo exposes the following functionality:
* Prepare for Switchover
¢ Cancel Prepare for Switchover
* Get Domain Software Connection Status
* Get Slot Software Connection Status
* Perform Switchover
* Set Hardware Concession Host
* Get Hardware Concession Host

10.1.2.5 Host Domain Enumeration and Association

The RHDemo enumerates hosts and domains, reports host-domain associations and returns useful

data on the domains, hosts and dlots. It covers the following functions:
* Get Domain Count
* Get Domain Numbers
* Get Domain Ownership
* Get Domain Slot Path
* Get Domain Slot Count
* Get Domain Slots
* Get Slot Domain
* Get Current Host Number
* Get Host Count
* Get Host Numbers
¢ Get Host Name
* Get Host Availability
¢ Get Domain Availability to Host

10.1.2.6 Slot Information

The RHDemo returns the following device information on the system slots:
* Physical slot information
¢ Slot Child Information

10.1.2.7 Notification, Reporting and Alarms

The RHDemo reports the following switchover notifications, alarms and other events:

¢ Enable Domain State Notification
¢ Enable Switchover Notification

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

97

[]
Demonstration Utilities IntGI@:

10.1.3

10.1.3.1

10.1.3.2

98

* Enable Switchover Request Notification
* Enable Unsafe Switchover Notification
* Disable Notification

IPMI Interface
The IPMI interface is an important element of the RSS system architecture. It is used extensively
for system management and inter-chassis communications:

* Access

* Configure

* System management

¢ Fault configuration and management

* |solation strategies

* |nter-host communications

The IPMI interface exercises the following IPM1 API, fault configuration and system management
functions:

Get Temperature Sensor Satus/Thresholds - Gets the temperature sensor status and readings.
Set Temperature Sensor Satus/Thresholds - Sets the temperature sensor status and thresholds.
Get Voltage Sensor Satus/Thresholds - Gets the voltage sensor status and readings.

Set Voltage Sensor Satus/Thresholds - Sets the voltage sensor status and thresholds.

Fault Configuration

The RHDemo performs the following fault configuration activities:
* Upper/Lower non-critical threshold
* Upper/Lower critical threshold

* Upper/Lower non-recoverable threshold

Isolation Strategy

The RHDemo executes one of the following isolation strategies, depending on the occurring event:
* Alert
* Power Off
* Resat
* Power Cycle
* OEM Action
* Diagnostic Interrupt (NMI)

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Demonstration Utilities

10.1.4 Hot Swap Interface
The basic purpose of the CompactPCl hot swap functionality isto alow orderly insertion or
extraction of CompactPCI boards without affecting operation of the system involved. The hot swap
interface in this demo operates under Linux* and VxWorks*. The current demo version does not
support hot swap functionality. However, this new HS modul e does demonstrate manipulation of
the Hot Swap APl (HSAPI).
10.1.4.1 HS Functional Description
The HS modul e exercises/simul ates these capabilities:
1. Hot swap board insertion
2. Hot swap board extraction
3. Slot information retrieval
4. PCI treeinformation retrieval
5. Catching and printing of notification messages
10.1.4.1.1 Hot Swap Board Insertion
Hot swap board insertion can be simulated by the demo application. When thisis performed, the
operating system looks for driversthat can be installed for this new device. The following two files
contain information about PCI devices and their drivers:
/lib/modules/2.4.18-rh/modul es.dep
/lib/modules/2.4.18-rh/modul es.pcimap
The file modul es.pcimap has a more complicated structure than modules.dep. Thisfile specifiesthe
PCI configuration information identifying a particular board and the specific driver module to load
for it.
10.1.4.1.2 Hot Swap Board Extraction
Hot swap board extraction can be simulated by the demo application. In Linux, the software
disconnection request cannot be vetoed by afunctional driver or by an application. However the
board cannot be extracted if it is controlled by alegacy driver (adriver that does not conform to the
current model for PCI drivers, introduced in the 2.4 kernel).
10.1.4.1.3 Slot Information Retrieval
If this functionality is performed, information on the board is retrieved based on the slot path. The
type of information retrieved from the selected PCI device is described in chapter 9, “High
Availability Slot Control Interface,” in the PICMG 2.12 CompactPCl Hot Swap Infrastructure
Interface Specification. For more details on PICMG, see Section H.1, “ CompactPCI” on page 131.
10.14.1.4 PCI Tree Information Retrieval
When this functionality is executed, the related API call returns alist of PCI devices available on
the system. Flags are set for each device to determine its state at that particular time. See the “PCl
Tree Information Retrieval Flags’ table.
High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 99

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Demonstration Utilities IntGI@:

Table 3. PCI Tree Information Retrieval Flags

Flags Meanings
PRES Device is present.
CONN Device is software connected.
CONF Device’s software connection failed.

The following information is displayed:
¢ Slot path
¢ Vendor ID
¢ DevicelD
* SubsystemVendor ID
* SubsystemDevice ID
* Classcode D
* Sub class code
* Programming interface
* Header type
* Flag
10.1.4.1.5 Catching and Printing Notification Messages

This demo application covers the capability of catching and printing notification messages sent by
HSSD when an event istriggered. The following event types are supported. The flags supported
are defined in the “ Event Notification” topic of the Intel® NetSructure™ Hot Swap Kit for

Linux 4.2 software manual. For details on obtaining this manual, see Section H.2, “User
Documentation” on page 131.

Table 4. Events that Generate Notification Messages

Event types Meanings
EXTR REQ Device extraction request.
EXTR CONF Device extraction confirmed.
REMOVAL Device removed.
INSERTION Device inserted.

10.1.4.2 Slot Information Structure

The dot information structure containsinformation about a specific dot, identified by adot path. It
includes the following pieces of information:

* Pathtothe slot

® Current bus number, dot number and function number of the dot
* Physical dot humber

* Physical dot depth

100 High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Demonstration Utilities

Slot state flags

If the dot is not empty, the following fields are a so present:

Vendor ID

Device D

Subsystem vendor 1D

Subsystem ID

Revision ID

Class, subclass, programming interface
Header type

HS-CSR, if any

10.1.4.3 Slot State

When the slot information structure isfilled in as aresult of acall, the HsStateFlags field contains
a set of flags representing the current state of the slot. The following flags are defined:

Table 5. Slot State Flags

Flags Meanings
HS_STATE_DEVICE_PRESENT A device is present in the slot
HS_STATE_SW_CONNECTED A device is present in the slot and software connected
HS_STATE_EXTRACTION_PENDING Extraction request pending for the device in the slot
HS_STATE_READY_FOR_EXTRACTION Device is ready for extraction, the blue LED is lit

10.1.5 Slot Control Interface

Slot control capability is defined in the Redundant Host System Model, where the capabilities of
the system are extended to allow software control of aboard’'s hardware connection state.

The system software adds drivers and services for this greater degree of control. This allows
software to electrically isolate the board from the system until an operator is available to do so
physically.

Slot control enables:

Capability to perform reset on the board
Change the board's power state to ON
Checks the presence and health of the board

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 101

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Demonstration Utilities IntGI@:

102

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Software Installation

Software Installation A

A.l

A.2

Linux

The Redundant Host software package in Linux is broken out into two RPM packages. To achieve
full Hot Swap Redundant Host capability, both packages must be installed. The packages can be
installed individually if only specific functionality is required. In order for the Redundant Host
functionality to be enabled properly the Hot Swap Kit for Linux must first be installed. See the
Intel® NetSructure™ Hot Swap Kit for Linux 2.4 Software Manual for installation/setup
instructions.

The Linux kernel, versions 2.4.18 (RedHat 7.2), provide capabilities for dynamically loading and
unloading drivers, allowing dynamic insertion and removal of devicesin a computer system
without stopping the system. However, there is no built-in support in the operating system for
dynamic insertion and removal of CompactPCI devices. Additional software, provided within the
Hot Swap Kit for Intel NetStructure Processor Boards, collaborates with the system to provide hot
swap support for CompactPCl. The core of the Redundant Host Software Kit isto provide the
functionality reguired for Ultra-Quick switchovers with minimal loss of system serviceability.

Therest of this section details the install ation and setup procedure for the Redundant Host
Software Kit for Linux.

Installing the Redundant Host Software Kit

The Redundant Host Software Kit is packaged as an SRPM (Source Red Hat Package Manager)
module:

CompactPCI-RH-1.0-1.src.rpm

This SRPM includes kernel patches, the RHSK drivers and utilities, and an RPM spec file that can
be used to build a binary RPM module.

The RHSK requires that the kernel sources be patched and rebuilt. The RHSK drivers and utilities
depend upon, and are closely matched with, the kernel version against which they were built. For
thisreason, it is not practical to distribute a binary RPM that includes both a pre-built kernel and
collection of RHSK drivers and utility binaries.

Instead, this section describes the steps that should be performed at the end-user site to perform the
kernel patching and the RHSK driver and utility recompilation.

The end-user may build abinary RPM that is specific to their hardware environment; the steps
below provide instructions for accomplishing this. This binary RPM simplifies RHSK installation
on other similar hardware (that is, it can be used instead of the SRPM).

The following provides atop-level view of the stepsrequired to install the HSK SRPM, make local
customizations, and produce a binary RPM for installing a site-specific, HSK-enabled Linux
system:;

1. Instal the SRPM

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 103

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Software Installation I ntGI @

A.3

A31

A.3.2

A.3.3

104

Note:

2. Patch and rebuild the kernel with Redundant Host Support, then copy this kernel image to the/
usr/src/redhat/BUIL D/CompactPCI-RH-1.0/kernel _patches directory as “linux-<kernel-
version>" (for example, “linux-2.4.18"). The binary RPM spec includes this kernel image.

3. Make any appropriate edits to the RHSK configuration files
4. Reboot

Installing RH Source RPM

Source Installation

Make sure you have administrator login privileges:

bash# rpm —i v Conpact PCl -RH 1. 0-1.src. rpm

bash# rpm -bp /usr/src/redhat/ SPECS/ Conpact PCl - RH. spec
This will create:

/usr/ src/redhat/ SPECS/ Conpact PCl - RH. spec

/usr/ src/redhat/ SOURCES/ Conpact PCl -RH-1. 0.t gz
/usr/src/redhat/BU LD Conpact PCl - RH

/usr/src/linux-<kernel -version>rh.patch (for exanmple, /usr/src/linux-
2.4.18.rh. patch)

Patching and Rebuilding an RH-Enabled Kernel

The SRPM includes several kernel patch files, one for each <kernel-version> with the following
format:

I'i nux- <ker nel -versi on>. pat ch
for example,
linux- 2.4.18.rh.patch

These are located in the /usr/src directory after the “rpm -bp” command isissued. The patch files
contain modifications needed to make a standard Linux <kernel-version> redundant host capable.
The patch file(s) can be applied to the kernel sources downloaded from www.kernel.org. The
following topics show how to patch and rebuild the kernel for Linux kernels <kernel-version>.

Patching Linux with Kernel <kernel-version>

bash# cd /usr/src

bash# patch —d <kernel -directory>-p0 < |inux-<kernel-version>.rh.patch
bash# cd |i nux-<kernel -version>

bash# make nenuconfig

You must enable the“CONFIG_HA_PCI_HOT_SWAP’ option for the HSK to be enabled. This
configuration option is enabled when enabling “ CPCl Hot Swap PICM G 2.1/2.12 Support (NEW)”
found in the General Setup section. Once CPCI Hot Swap support is enabled then the
CONFIG_PCI_HA_HOT_SWAP _ZT5523 ZT5524 ServerWorks chipset support should be
enabled. To enable full support for the Redundant Host architecture, both CONFIG_IPMI, and

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

http://www.kernel.org

A.3.4

A.4

A4l

A.4.2

Software Installation

CONFIG_RH options also must be enabled. The Redundant Host Software is dependant on both
the Hot Swap support and IPMI drivers to be enabled.

bash# nake dep

bash# nmake install

bash# make nodul es

bash# nake nodul es. dep

Making RH Configuration Changes

Make any required changes to the following files located under the /usr/src/redhat directory (see
Section A.4, “ Configuring the Redundant Host Infrastructure” on page 105 for more information):

BUILD/CompactPCI-RH-1.0/ _ Backplane driver
BpTestDrv (see “/lib/modules/misc/priBptd.o™)

Slot Control driver

BUILD/CompactPCI-RH-1.0/SlotCntrIDrv (see “llib/modules/misc/slotentrl.o”)

API Shared Libraries

BUILD/CompactPCI-RH-1.0/lib (see “/CompactPCI-RH-1.0/app/lib”)

System Service and RH Demo
(see “/CompactPCI-RH-1.0/app/bin”)

BUILD/CompactPCI-RH-1.0/bin
To build the modules listed above, simply go to the top level build source directory (in this casethe
BUILD/CompactPCI-RH-1.0 directory) and use the “make all” command at the command line
prompt.

Configuring the Redundant Host Infrastructure

/lib/modules/priBptd.o

The priBptd.o is aloadable backplane device driver that can be used in conjunction with the

ZT 5541 peripheral system master board to test out the Redundant Host Infrastructure
configurations. See the readme file that accompanies this driver to find out how to fully useit to
exercise your system configuration.

/lib/modules/slotcntrl.o

Theslotentrl.o isaloadable slot control driver that is used in association with the Intel NetStructure
ZT 7102 Chassis Management Module. This driver provides access to Hot Swap Backplane
Peripheral Device Control. In addition, this driver provides complete IPMI access to the Chassis
Management Module. See the Intel® NetStructure™ ZT 7102 Chassis Management Module
manual for a detailed description of the capabilities and configuration of this board. To install this
driver, type the following command:

insmod -f /1ib/nodul es/ misc/slotentrl.o

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 105

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Software Installation I ntGI @

A.4.3

A.4.4

A5

106

/CompactPCI-RH-1.0/app/lib

After building all the projects in the application subdirectory, this directory contains the following
shared object modules and library:

* liblpmiApi.so

* |ibRhApi.so

¢ |ibSlotCntrlApi.so
¢ libBrandsHatch.a

The shared object modules provide dynamically linkable access to the exposed IPMI, Redundant
Host, and Slot Control APIs, while the library provides a statically linkable entity for the
Redundant Host applications. In order for Linux to find the shared object files, the /etc/Id.so.conf
file must contain the path to these object files, and the Linux Idconfig must be executed.

/CompactPCI-RH-1.0/app/bin

After building all the projects in the application subdirectory, this directory contains the following
applications:

¢ rhinit
* rhDemo
Therhinit application is a program that is run and exitsimmediately. rhinit reads the hssd.conf file

so that it can associate the physical slot to slot-path and pass this information down to the RH
kernel infrastructure.

If this application is not run before an application that accesses sl ot-path information is run, then
the slot-path related APIs will not return the correct data. The rhDemo is a demo application that
exercises the exposed Redundant Host Software functionality. See Chapter 10, “ Demonstration
Utilities,” for more detailed information.

VxWorks (Tornado Il Setup)

For information specific to the installation and setup of the VxWorks Tornado Board Support
Package, refer to the Board Support Package for CompactPCI Software Manual and the
WindRiver* VxWorks Programmer’s Guide. For more information on obtaining documentation,
see Section H.2, “User Documentation” on page 131.

The Redundant Host Option is enabled in asimilar manner as enabling any other Tornado
Workspace* option.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

RedundantHostFunction ReturnValuesB

HSI_STATUS SUCCESS

HSI_STATUS BUS NOT_FOUND

HSI_STATUS BUS RESET

HSI_STATUS BUS_SEG_NOT_CONTOLLED

HSI_STATUS BUSY

HSI_STATUS CANNOT_EXTRACT_LOCAL_DEVIC

E

HSI_STATUS CANNOT_INSERT_LOCAL_DEVICE

HSI_STATUS DEVICE_ALREADY _EXISTS

HSI_STATUS DEVICE_CREATION_FAILED

HSI_STATUS DEVICE_ENTRY_NOT_FOUND

HSI_STATUS DEVICE_EXTRACTION_FAILED

HSI_STATUS DEVICE_INSERTION_FAILED

HSI_STATUS DEVICE_NOT_CONTROLLED

The specified operation completed
successfully.

The operation failed because the
required bus was not found.

The operation failed because the
required bus was in reset.

The operation failed because the
required bus segment was not
controlled by the local Host.

The operation failed because the
device was busy with some other
operation.

The system detected a command
attempting to extract a device that
resides on the local system master
PCI bus. Thisisanillegal operation.

The system detected a command
attempting to insert adevice onto
thelocal system master PCI bus.
Thisisanillegal operation.

The Redundant Host driver detected
an attempt to add a backplane PCI
device that is aready being
maintained by the RH driver.

The creation of aUniversal PCI
Table entry failed.

A search for aUniversal PCl Table
entry failed to return any results.

The PCI Configuration Module was
unable to successfully remove the
device entry information from the
Universal PCl Table located internal
to the Redundant Host driver.

The PCI Configuration Module was
unable to successfully insert the
device entry information into the
Universal PCI Table located internal
to the Redundant Host driver.

The operation failed because the
specified device was not controlled
by the local Host

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 107

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host Function Return Values

HSI_STATUS DEVICE_SEARCH_FAILED

HSI_STATUS FAILED DEVICE_EXTRACT_SEND

HSI_STATUS FAILED DEVICE_INSERT _SEND

HSI_STATUS FAILURE

HSI_STATUS IMPLEMENTATION_DEFINED_MAX

HSI_STATUS IMPLEMENTATION_DEFINED_MIN

HSI_STATUS INSUFFICIENT_BUFFER

HSI_STATUS INVALID_ADDRESS

HSI_STATUS INVALID_DEV_HANDLE

HSI_STATUS INVALID_EVENT

intel.

The search for this device failed to
be resolved. This does not mean that
the device does not exist, but simply
that the Universal PCI table located
in the querying Host did not resolve
this search.

The PCI Configuration Module was
unabl e to successfully send a device
extraction message from the
detecting Host to the Host that has
no visibility of the backplane device.

The PCI Configuration Module was
unable to successfully send a device
insertion message from the detecting
Host to the Host that has no
visibility of the backplane device.

The specified operation failed for an
unspecified reason

The upper boundary (inclusive) of
the range of implementation-defined
status codes; implementation-
defined status code shall fall into a
consecutive range of status codes

The lower boundary (inclusive) of
the range of implementation-defined
status codes; implementation-
defined status code shall fall into a
consecutive range of status codes

The specified operation could not be
completed because a buffer
specified for output data to be
returned has insufficient size; no
data was written to the buffer in this
case.

The operation failed because the
specified addresswas invalid.

The operation failed because the
specified device handle was invalid.

The operation failed because the
specified event was invalid.

108 High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
IntGI@: Redundant Host Function Return Values

HSI_STATUS INVALID_PARAMETER The specified operation could not be
completed because one or more
input parameters were not valid.

Examples:

e NULL pointer

¢ PCI bus number greater than 255
 Slot number out of range

« Malformed Subsystem ID mask
for the Alternate HS_CSR Interface

HSI_STATUS NO_DATA_DETECTED The specified operation could not be
completed because no meaningful
data could be returned to the caller
asthe result of the operation.

Examples:

¢ Board presence status could not
be determined when the slot was
powered.

» Board health status could not be
determined when the ot was not
powered.

HSI_STATUS NO_MEMORY The specified operation could not be
completed because memory could
not be allocated

HSI_STATUS NO_SUCH_BRIDGE The PCI-to-PCI bridge information
found in the Redundant Host System
Informational Table did not match
the actual location of the given
bridge device.

HSI_STATUS NO_SUCH_DEVICE The specified operation could not be
completed because the device upon
which the requested operation was
to be performed did not exist. This
code covers cases wWhere a device
does not exists at al aswell as
where the user does not have the
rights to perform the operation on
the particular object.

HSI_STATUS NO_SYS RH_TABLE_FOUND The Redundant Host System
Informational Table could not be
retrieved.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 109

Download from Www.Somanuals.com. All Manuals Search And Download.

Redundant Host Function Return Values

110

HSI_STATUS NOT_AVAILIBLE

HSI_STATUS NOT_READY

HSI_STATUS NOT_SUPPORTED

HSI_STATUS OBJECT DOES NOT_EXIST

HSI_STATUS OPERATION_ABORTED

HSI_STATUS OPERATION_INTERRUPTED

HSI_STATUS OPERATION_NOT_APPLICABLE

HSI_STATUS PENDING

HSI_STATUS REQUEST DENIED

HSI_STATUS TIMEOUT
HSI_STATUS UNABLE_TO BUILD_UPT

HSI_STATUS UNABLE_TO_COPY_APP_DATA

HSI_STATUS UNABLE_TO_LOCATE_P2P_BRIDGES

HSI_STATUS UNABLE_TO_MAP_CMOS

HSI_STATUS UNABLE_TO REASSIGN_RESOURCE

S

intel.

The specified operation could not be
completed because necessary
functionality was not available at the
time of the call.

The specified operation failed
because the device was not ready to
handle the operation

The specified operation is not
supported

The specified operation could not be
completed because an object
specified in input parameters did not
exist.

The specified operation was aborted
/ canceled

The specified operation was
interrupted by another operation

The specified operation could not
completed because the operation
was not valid for the current device
context or interface status.

The operation was started but
returned before being completed.
The operation will be completed
asynchronously.

The specified operation request was
denied due to security reasons.

The operation timed out.

The Host’s Universal PCI Table
failed to be populated properly.

The operation was unable to access
the data due to an error coping the
application data

The Redundant Host driver was
unable to locate the PCI-to-PCl
bridges that allow the system master
to access backplane devices.

The Redundant Host was unable to
successfully map the System
Information table found in the
CMOS.

The Redundant Host driver was
unable to successfully reassign the
backplane devices allocated
resources.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
IntGI@: Redundant Host Function Return Values

HSI_STATUS UNABLE_TO_SEND_PACKET

HSI_STATUS UNSUCCESSFUL_TRANSLATION

HSI_STATUS UNSUPPORTED_PLATFORM

HSI_STATUS UPT_INSERTION_FAILED

The Redundant Host was
unsuccessful in sending an inter-
Host message between the
redundant system masters.

The Redundant Host driver failed to
translate the Slot-Path information
for aP2P Bridge into a bus-device-
function descriptor.

The operation is not supported by
the current Hardware Platform

The Redundant Host driver failed to
successfully insert a backplane
deviceinto the internal Universa
PCI Table.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 111

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
Redundant Host Function Return Values I"tel@

112

This page intentionally left blank.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intgl.
HSK Device Driver Interface for
VxWorks* 5.4 C

The knowledge required to recompile the VxWorks kernel, as well as understand how the HSK
device driver integrates with VxWorks, reguires a high degree of competency with this operating
system in order to gain the most benefit from an RH based system.

Whether you are modifying an existing driver or designing the device driver from scratch, adding
RH-aware functionality isastraightforward process for an experienced VV xXWorks programmer. The
driver must be written so it can transition from an Initialized state to a Quiesced state, and from a
Quiesced state to an Active state and back without being reloaded or re initialized.

When compiled, the provided driver-code template module makes available a series of function
calls matched to the required callbacks list in the HSK Driver Instantiation Code Segment. This
template must be populated with driver and device initialization functions. You can directly move
existing code segments from a driver into the template.

HA functions must be incorporated into any peripheral device driver used within aHigh-
Availability system. You need to restructure some of the device drivers to add these enhancements.
They should be included on a conditional basis for the drivers to operate in both High-Availability
and non-High-Availability systems.

Devices that do not conform to the CompactPCl Hot-Swap specification (PICMG 2.1) may not
fully benefit from High-Availability architecture and may unexpectedly and adversely affect
performance.

Note: Devices must not assert interrupts before the appropriate device drivers have been loaded.

Note: Device PCI configuration must match the CompactPCl specification. |mplement the capability
register identifier and bit layout for the Status register as defined in the PICMG 2.1 specification.

During instantiation, the device driver must register itself with the RH Manager. Registration is
necessary in order for the RH Manager to notify an interested backplane device driver that a
particular device is transitioning between device accessibility states. See theFigure 6, “Multi-
Stated Driver Flowchart” on page 33 for agraphical display of High-Availability state transitions.

When a driver registersitself with the HA Manager, it passes an HA Device object containing
callback function entries popul ated by the driver, adriver compatibility list, and a driver object
extension. A callback function is a pointer to afunction that isin turn called by the HA Manager
whenever adriver state change is required or message distribution event occurs for a particular
device.

C.1 HSK Driver Object Declaration

After adriver isregistered, it can send and receive the following message packets from a
reciprocating driver on the Redundant Host. The system call for adriver to register is
HARegisterDriver.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 113

Download from Www.Somanuals.com. All Manuals Search And Download.

|]
HSK Device Driver Interface for VxWorks* 5.4 IntGI e

C.2

114

struct _RH HSK DRV_0OBJ

{ CB_RH_ADD_DEVI CE AddDevi ce;
CB_RH_PNP St art Devi ce;
CB_RH PNP St opDevi ce;
CB_RH_PNP RenoveDevi ce;
CB_RH_PNP Sur pri seRenoval ;
PRH _DEVI CE_| NFO Devi cel nf o;
PRH_DRI VER_EXT Dri ver (bj ect Ext ;

} RH_HSK_DRV_OBJ, *PRH_HSK_DRV_OBJ;

The DriverExtension contains a pointer to a structure defined by the driver writer, and is context
specific to the registered device driver. The device information structure shown below indicates to
the HA Manager which devices should be associated with the registered driver. Upon registration,
the HA Manager scans all the devices within its domain and calls the AddDevice driver callback
function for al matching devices, or those devices whose attributes specified in the device
compatibility list match any given device found within the system.

The listSize value indicates the number of compatibility device entries defined by the device
information structure. While several different fields found in the compatibility device structure

exist, only those fields requiring HA Manager filtering need to be specified. The ValidFields entry
is used to indicate which fields are being used.

HSK Device Information Structure

struct _haDevicelnfo

Ul NT32 Li stSi ze;
RH_COVPAT_DEVI CE Conpat DevLi st[1] ;
} RH_DEVI CE_I NFO, *PRH_DEVI CE_| NFQ,

struct _RH COWPAT_DEVI CE

{
U NT32 Val i dFi el ds;

U NT16 Vendor | D;
U NT16 Devicel D,
Ul NT8 Revi si onl D;
Ul NT8 Progl f;

Ul NT8 Subd ass;

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

C.3

HSK Device Driver Interface for VxWorks* 5.4

Ul NT8 Based ass;
U NT16 SubVendor | D,
U NT16 SubSystem D

} RH_COWPAT DEVI CE, *PRH_COMPAT DEVI CE;

HSK Driver Instantiation Code Segment

The following code segment popul ates the HA Driver object. Return status validation has been
omitted, but an HA device driver should respond appropriately to failed return values.
STATUS RHDr v(voi d)

{
RH DEVI CE_I NFO* devinfo = NULL;
RH_HSK_DRV_OBJ* drvCbj = NULL;

/* Create our RH data object for Rh driver registration */
drvQbj = (RH_HSK_DRV_0OBJ*) mal | oc(si zeof (RH_HSK_DRV_OBJ));
menset (drvObj, 0x00, sizeof (RH HSK DRV_0OBJ));

/* Create the device info object */
devinfo = (RH_DEVI CE_I NFO*) mal | oc(si zeof (RH_DEVI CE_I NFO) +
si zeof (RH_COVPAT_DEVI CE)) ;
menset (devl nfo, 0x00, sizeof (RH DEVICE INFO) + sizeof (RH COVPAT_DEVI CE));

devl nfo->ListSi ze = 2;

devl nf o- >Conpat DevlLi st [0] . Vendor | D = DEC,

devl nf o- >Conpat DevLi st[0] . Devi cel D = DEC_21554;

devl nf o- >Conpat DevLi st[0]. Val i dFi el ds = COWPAT_LI ST_CHECK_VENDOR |
COWPAT_LI ST_CHECK_DEVI CE;

devl nf o- >Conpat DevLi st [1] . Vendor | D = | NTEL;

devl nf o- >Conpat DevLi st[1]. Devicel D = | NTEL_21555;

devl nf o- >Conpat DevLi st[1]. Val i dFi el ds = COMPAT_LI ST_CHECK_VENDOR |
COWPAT_LI ST_CHECK_DEVI CE;

/* Attach the device list to our RH driver object */

drvQbj - >Devi cel nfo = devl nfo;

/* Set pointers to our hotplug callback routines */

dr vObj - >AddDevi ce = bpt dAddDevi ce;

drvQbj - >St art Devi ce = bptdStart Devi ce;

dr vObj - >St opDevi ce = bpt dSt opDevi ce;

dr vObj - >RenoveDevi ce = bpt dRenpveDevi ce;

drvQbj - >Sur pri seRenmoval = bpt dRenpveDevi ce;

/* Register this driver's Interface with the RH/ HSK driver */
rhHskRegi sterDriver (drvQbj);

return OK;

}

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 115

Download from Www.Somanuals.com. All Manuals Search And Download.

|]
HSK Device Driver Interface for VxWorks* 5.4 IntGI e

C4

C4.1

116

A driver can have itself removed from the HSK Manager’s registry by calling the
rhHskUnregisterDriver routine. Use the RH driver object as an input parameter for thisroutine. If a
driver requests to unregister itself and any of the driver’s devices are not in the uninitialized state,
the rhHskUnregisterDriver function returns with an unsuccessful status.

The following code segment illustrates an AddDevice function. This callback has two objectives:

* Thedriver gives a status to adevice it controls and allocates any internal values associated
with a specific device.

* Thedriver must create adevice object that is used by the HSK Manager to communicate to the
Redundant Host-aware device driver which device is being exercised.

The AddDevice function is called once for every device associated with the registered driver. This

association is determined by the compatibility device definition passed to the rhHskRegisterDriver
function as shown in the previous code sample.

Redundant Host-Aware Callback Definitions

This section describes callback function syntax and functionality.

PRH_DEVICE_OBJ AddDevice

AddDeviceis called for each device associated with a particul ar device driver after the driver
registersitself with the HSK Manager. During the AddDevice routine, the device'sinternal
structures are set up and adevice object is created. A device object is a device context used by the
RH callback functions to perform appropriate operations on the device. No further actions are
required after an AddDevice call on a Standby Host. On an active system master, the device driver
should initialize the actual device.

Syntax
(PRH_DRI VER_EXT driver Ext, PCl_LOCATI ON pci)

Parameters
driverExt

Pointer to adriver object extension. Thisdataextension is specific to the driver that allocated it and
can be used for whatever purposes the driver seesfit.

pci

A PCI location structure. This structure contains the PCI bus, device, and function location where
the device being notified of the AddDevice call is located.

Return Value
Returns a pointer to a driver-defined device object. This object pointer is kept by the HSK Manager

and used as an input parameter to the RH device driver callback functions. If the AddDevicecall is
unsuccessful, than aNULL pointer valueis returned.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

In

C4.2

C4.3

®

HSK Device Driver Interface for VxWorks* 5.4

HSI_STATUS StartDevice

StartDeviceiscalled for adevice driver to commence or resume activity with its associated device.
Before this callback isinvoked, the device should be fully initialized, and the device driver should
be ready to begin hardware interaction. If unsuccessful statusis returned by this function, the HSK
Manager places this device into an unavailable state, meaning device activity suspends, although
re-initialization of this device may occur later. This callback is made only by an active system
master.

Syntax

(PRH_DEVICE_OBJ deviceobject)
Parameters

deviceobject

Pointer to a device abject returned by the AddDevice call. This datais a device context allowing
the device driver to identify the specific device whose state is changing to running. Device-specific
dataislocated in thisobject. The HA Manager places no restrictions on size or type of data used for
two reasons:

* The HSK Manager has no direct knowledge of the structure of thisinformation
* The HSK Manager is not required to perform any actions with this object

Return Value

HSI_STATUS SUCCESS if successful; otherwise HSI_STATUS_FAILURE

HSI_STATUS StopDevice

StopDevice isinvoked by the HSK Manager when activity to the specified device is suspended.
Thedriver terminates all outstanding transactionsif possible and rejects further device requests for
device access. If the driver attempts to process arequest after receiving this message, a system
crash may occur because the driver may have lost or islosing visibility of the backplane device.

It is up to the device driver to enter a quiescent state, meaning if the device driver is still
functioning, it must perform the following tasks:

1. Normalize all data
2. Release resources that may have been allocated for specific transactions

3. Return to a pre-StartDevice hibernation state ready to receive a StartDevice callback in order
to resume device activity

Syntax
(PRH_DEVICE_OBJ deviceobject)
Parameters

deviceobject

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 117

Download from Www.Somanuals.com. All Manuals Search And Download.

|]
HSK Device Driver Interface for VxWorks* 5.4 IntGI e

C444

C45

118

Pointer to adevice object. This datais adevice context allowing the device driver to identify the
specific device whose state is changing to stopped. Device-specific dataislocated in this object.
The HA Manager places no restrictions on size or type of data used for two reasons:

* The HSK Manager has no direct knowledge of the structure of this information
* The HSK Manager is not required to perform any actions with this object

Return Value

HSI_STATUS SUCCESS if successful; otherwise HSI_STATUS FAILURE

HSI_STATUS RemoveDevice

RemoveDeviceis called when the HA Manager detects a device being removed from the
backplanein an orderly fashion. “Orderly” means that the device and driver adhere to the PICMG
2.1 CompactPCI Hot-Swap Specification. The driver should release all previously allocated
resources, including the device object extension. After returning a successful completion statusto
the HA Manager, the device state is set to Uninitialized. Once adeviceisin this state, an
AddDevice and StartDevice call combination are required for the device driver to begin

communi cations with the actual device.

Syntax

(PRH_DEVICE_OBJ deviceobject)
Parameters

deviceobject

Pointer to adevice object. This datais a device context, allowing the device driver to identify the
specific device whose state is changing to removed. Device-specific datais located in this object.
The HA Manager places no restrictions on size or type of data used for two reasons.

* The HSK Manager has no direct knowledge of the structure of this information
* The HSK Manager is not required to perform any actions with this object

Return Value

HSI_STATUS SUCCESS if successful; otherwise HSI_STATUS FAILURE

HSI _STATUS SurpriseRemoval

SurpriseRemoval notifies the device driver that the system no longer has visibility to the device;
for example, if an operator removes a board without waiting for blue hot-swap LED illumination,
or if ahostile takeover occurs in which backplane control was transitioned to the Redundant Host
without an orderly handoff.

The driver for this device should fail any outstanding /O and rel ease the hardware resources used
by the device. The driver must ensure that no attempts are made to access the device because it is
no longer present. Following the successful return of this callback, the HSK Manager calsthe
driver’'s RemoveDevice callback routine, where an orderly deallocation of device driver resources
can occur.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

C.5

Cs.1

HSK Device Driver Interface for VxWorks* 5.4

Syntax

(PRH_DEVICE_OBJ deviceobject)
Parameters

deviceobject

Pointer to a device object. This datais a device context allowing the device driver to identify the
specific device that experienced a surprise removal by an operator. Device-specific datais located
in this object. The HA Manager places no restrictions on size or type of data used for two reasons:

* The HSK Manager has no direct knowledge of the structure of thisinformation
* The HSK Manager is not required to perform any actions with this object

Return Value

HSI_STATUS SUCCESS if successful; otherwise HSI_STATUS_FAILURE

RH-Aware Message Registration Definitions

In order to facilitate agraceful failover between Hosts and the devicesthey control, Intel providesa
set of functions that allow backplane device drivers and the devices they control to synchronize
state information. State information is anything that the device driver writer feelsis necessary for
graceful mode transitions. In this case, a mode transition is any state change that starts or stops
deviceinteraction (for example, atakeover).

The rhHskRegisterM sgCallback call allows a device to register a message callback with the RSS
driver. This message callback is called by the RSS driver whenever a message is passed from a
device driver on one Host to the corresponding device driver on another Host.

The rhHskSendM essage call allows messages to be sent from one Host to the corresponding
instance of a device on another Host. This function takes a packet of RSS driver transparent data
and redirects it to the registered receive message callback on the opposite Host. The RH driver
redirects this data using the pci_dev structure entry specified in the input parameter of the
rhHskSendM essage function call. Thisinformation is used to identify the device driver that
receives the data packet.

The rhHskUnregisterMsgCallback call is used to unregister a receive callback function associated
with the previously registered device.

The following topics describe the syntax and functionality of the receive message callback register
and unregister functions.

HSI STATUS rhHskRegisterMsgCallback

This function associates the receive message callback with a particular instance of adevice. Only
one device/message callback association is allowed at atime. If thiscall is performed twice for the
same device, an error valueis returned.

Syntax
(PCI_LOCATION pci, RH_HSK_RH_PROCESS _PACKET callback , PVOID pContext)

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 119

Download from Www.Somanuals.com. All Manuals Search And Download.

|]
HSK Device Driver Interface for VxWorks* 5.4 IntGI e

C.5.2

C.6

120

Parameters

pci

A PCI location structure. This structure contains the PCI bus, device, and function location of the
device being associated with the message callback routine.

callback

This parameter isa callback pointer, registered with the HSK Manager, that isthe receiver function
for messages being sent to a particular device's registering device driver. The message callback
format is specified in Section C.6.1, “RH_HSK_RH_PROCESS_PACKET” on page 121.
pContext

This parameter isacontext value that is passed to the process packet function. Thisisacontext free
value, which means that the value is not modified by the message routing system, and is passed in
its entirety.

Return Value

HSI_STATUS SUCCESS if successful; otherwise HSI_STATUS FAILURE

int rhnHskUnregisterMsgCallback

This function disassociates the receive message callback function from the device specified by the
PCI location.

Syntax

(PCI_LOCATION pci)
Parameters

pci

A PCI location structure. This structure contains the PCI bus, device, and function location of the
message callback function being disassociated.

Return Value

HSI_STATUS SUCCESS if successful; otherwise HSI_STATUS FAILURE

Process Packet Callback Definition

This section describes the syntax and functionality of the process packet callback function.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

In

Co6.1

C.7

C71

®

HSK Device Driver Interface for VxWorks* 5.4

RH_HSK_RH_PROCESS PACKET

RH_HSK_RH_PROCESS PACKET is called when a message packet is being redirected to a
device driver for synchronization purposes. The RH driver validates the data packet header in
addition to performing a CRC-16 check of the data payload. The payload part of the packet is
driver dependent and defined by the driver developer. The RH driver confirms the validity of the
CRC-16 value within the packet without validating packet contents.

Syntax

(UINT8* pBuUf, intiLen, PVOID pContext)

Parameters

pBuf

Pointer to a data packet being received from the RH driver. It is the responsibility of the device
driver to validate the packet contents. Upon returning from this callback, the RH driver deallocates

the data packet. The data packet must be smaller than 1KB. The RH driver places no restrictionson
the type of data used for two reasons:

* The RH driver has no direct knowledge of the structure of thisinformation
* TheRH driver is not required to perform any actions with this object
len
Length in bytes of the data packet being sent.
pContext
This parameter is acontext value that is passed to the process packet function. Thisisacontext free
value, which means that the value is not modified by the message routing system, and is passed in
its entirety.
Return Value

None

RH-Aware Send Message Definition

This section describes the syntax and functionality of the send message function.

HSI_STATUS rhHskSendMessage

This function initiates the sending of a data packet from a device driver on the Active Host to the
corresponding device driver on the Redundant Host.

Syntax
(PRH_DATA_PACKET pPacket, UINT32 iLen, PCI_LOCATION pci)

Parameters

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 121

Download from Www.Somanuals.com. All Manuals Search And Download.

|]
HSK Device Driver Interface for VxWorks* 5.4 IntGI e

C.8

122

pPackett
Pointer to a data packet being sent to the specified device driver. It isthe responsibility of the
device driver to validate the packet contents. Upon returning from this callback, the RH driver

deallocates the data packet. The data packet must be smaller than 1KB. The RH driver places no
restrictions on the type of data used for two reasons:

* The RH driver has no direct knowledge of the structure of thisinformation
* TheRH driver isnot required to perform any actions with this object

iLen
Length in bytes of the data packet being sent.
pci

A PCI location structure. This structure contains the PCI bus, device, and function location of the
device that isto receive the message packet.

Return Value

HSI_STATUS SUCCESS if successful; otherwise HSI_STATUS FAILURE

Alternate HS_CSR Interfaces

The Redundant Host Software infrastructure provides support for alternate HS CSR
implementations as defined by the PICM G 2.1 CompactPCl Hot Swap Specification. For adetailed
description and API details please refer to Hot Swap Infrastructure Interface Specification, PICMG
2.12, specifically in the Alternate HS_CSR Interfaces chapter.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intgl.
RH Device Driver Interface for
Linux* 2.4 D

The High-Availability RH architecture leverages both the capabilities of the native hot-pluggable
Linux driver model and the Hot-Swap Kit driversto offer ultra-quick takeovers while maintaining
maximum device serviceability. The Linux hot-pluggable driver model not only provides hot
extraction of backplane devices, but also dynamic device insertion. The Linux hot-pluggable driver
model is a stated driver architecture that is used by RH drivers to survive system switchovers with
aminimum of service interruptions. For further details on this driver model please refer to the
Linux Device Drivers Book version 2 published by O’ Reilly and Associates. Specifically the Hot-
Pluggable driver extension is documented in the PCI Interface chapter.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 123

Download from Www.Somanuals.com. All Manuals Search And Download.

|]
RH Device Driver Interface for Linux* 2.4 IntGI &

124

This page intentionally left blank.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Design Guidelinefor Peripheral VendorsE

The following topics present guidelines for designing a device driver for usein the Intel
NetStructure Redundant Host environment.

E.1 Non Bus Mastering Peripheral

Peripheral devicesthat are not masters p resent no complications for a Redundant Host
environment. These devices do not perform data writes into System Master memory. They only
request the System Master to read data from the device.

Use of the synchronization mechanism provided allows the System Masters to maintain state
information. The domain owner should ensure its standby/backup checkpoints any necessary data
before clearing it from the peripheral device. If a catastrophic failure occurs before successful
checkpointing of important data, the standby/backup can recover the data from the peripheral
deviceitself and continue operation without data loss.

E.2 Bus Mastering (DMA Capable) Peripheral

It isvery important to data coherency that peripheral devicesthat perform DMA transactions into
System Master memory ensure the data is received and processed by the System Master before
reusing itslocal buffer. This alows the domain owner to checkpoint the data to the backup/standby
before acknowledging the transaction. If a catastrophic failure occurs before successful
checkpointing of important data, the standby/backup is able to recover the data from the peripheral
deviceitself and continue operation without data loss.

It isalso important to note that during a failover from one domain owner to another, buffers on
these SBCs are guaranteed not to bein the same physical |ocation unless the device drivers manage
this action. In the event of different physical buffer address locations, the device driver isrequired
to re-initialize the device to point to the new buffer address.

E.3 Support for Unmodified Standard Drivers

In order for a Redundant Host CompactPCl architecture to provide Ultra-quick switchoversin a
seamless manner, a certain level of support isrequired of the device drivers that access backplane
peripherals. If the backplane device drivers that reside on the RH system do not adhere to the HA
Device Driver interfaces stated in the previous two appendices (depending on whether the driver is
supporting VxWorks or Linux), then the system state after a switchover will quite possibly be
volatile and a system crash will more then likely occur.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 125

Download from Www.Somanuals.com. All Manuals Search And Download.

u
Design Guideline for Peripheral Vendors Inte|®

126

This page intentionally left blank.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Porting ZT 5550 HA Applications to

PICMG 2.12

F

The PICMG 2.12 base API (described in Chapter 6) and IPMI replace the functionality of the Host
Controller API used with the ZT 5550 system master board. This appendix provides information
for porting applications that were written for the ZT 5550 to a PICM G 2.12 based system. The

following table summarizes the changes in the functionality.

Categ_ory ZT 5550 Functions Redundant Host Functions Notes
Functions
Connection HAConnect RhOpen
Management
HADisconnect RhClose
RhEnumeratelnstances,
RhGetInstancelD
System HAGetHostName,
Information HAGetHostIP RhGetHostName
HAGetSlotID No Directly Equivalent Function
RhGetDomainCount,
RhGetDomainNumbers,
RhGetDomainSlotPath,
RhGetDomainSlotPath,
RhGetDomainSilots,
RhGetSlotDomain,
RhGetCurrentHostNumber,
RhGetHostCount,
RhGetHostNumbers,
RhGetDomainAvailabilityToHos
t,
RhGetPhysicalSlotInformation,
RhGetSlotChildInformation
Domain Status RhGetDomainOwnership, No function for determining if the
and Control HAGetHostStatus RhGetHostAvailability Redundant Host is "Alive"
HAConfigurationMode | RhSetHostAvailability
HAGetModeConfig
HASetModeConfig
HAActivateModeSele | RhSetHwDestinationHost,
ct RhPerformSwitchover
HACIlearPersistentFla
gs
HAlnitiateTakeover RhPerformSwitchover

HASetHCC

RhSetHostAvailability,
RhPerformSwitchover

Many of the HASetHCC options
can only be effected through
IPMI. Some are no longer
supported due to hardware
limitations.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

127

Porting ZT 5550 HA Applications to PICMG 2.12

128

RhGetHwDestinationHost,
RhPrepareForSwitchover,
RhCancelPrepareForSwitchov
er,
RhGetDomainSwConnectionSt
atus,
RhGetSlotSwConnectionStatus

RhEnableDomainStateNotificat
ion,
RhEnableSwitchoverNatificatio

Event e n,
Notification HAEnableNotification RhEnableSwitchoverRequestN
otification,
RhEnableUnsafeSwitchoverNo
tification
HADisableNotification | RhDisableNotification
Host Control HAHostControl This functionality has been
moved to IPMI.
HAGetFaultSeverity,
Fault HASetFaultSeverity, .) .
Management HAGetlsolationConfig This functionality has been
- - moved to IPMI.
Configuration ,
HASetlsolationConfig
HAEnableDiagnostics
System , This functionality has been
Diagnostics HADisableDiagnostic moved to IPMI.
s
Watchdog HAWatchdogConfig, This functionality has been
Functionality HAWatchdogReset moved to IPMI.
This functionality has been
Bus HAGetGNTMasks, made private to the RH Driver.
Management HASetGNTMasks, There are no functions provided
Functions HAResetBus to give direct control over this
functionality.
Fault ;,:\t(é\retDlagnostlcsRe This functionality is not longer
Simulation HAGenerateFault supported.
HAGetEthernetRo This functionality is not longer
Ethernet uting, supported though any API. It
Routing HA SetEthernetRou can only be controlled from the
ti ng BIOS setup screen.
HACounterConfig, . . o
HACounterRead, This functionality is not longer
Counter . supported. The counter
: HACounterWrite, ;
Function hardware is not present on most
HACounterEnable, boards
HACounterDisable '
) This functionality is not longer
Miscellaneous HAGetBHT_lmeout, supported. This is primarily
Functions HASetBHTImeout, because the need for these
HASetUserLEDs

functions has been eliminated.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

RH Switchover on OS Crash G

The High-Availability RH architecture enables the system master board to perform a switchover to
the backup host in the event of a system crash.

Under the Linux* operating system the RH Software patches the Linux kernel to perform a
switchover whenever akernel panic occurs. In addition, the host board can be forced to reboot
under these circumstances by simply adding the string “panic=1" in the append statement found in
thelilo.conf configuration file.

Under the VxWorks* operating system this same switchover/reboot functionality is attached to the
NMI interrupt handler. To force a system switchover and reboot under VxWorks, you can configure
the ZT 5524 watchdog timeout to force an NMI interrupt to be generated. This forces the modified
NMI handler to be activated in the event that the ZT 5524 watchdog is not strobed in a suitable
amount of time. This causes a switchover and reboot of the failed host to occur. See the Intel®
NetSructure™ ZT 5524 System Master Processor Board Technical Product Specification for
information about configuring the watchdog/NMI interrupt. For more information on obtaining
documentation, see Section H.2, “User Documentation” on page 131.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification 129

Download from Www.Somanuals.com. All Manuals Search And Download.

[]
RH Switchover on OS Crash IntGI e

130

This page intentionally left blank.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Data Sheet Reference

H.1 CompactPCI

Information about CompactPCl specificationsis available from PICMG* (PCI Industria
Computers Manufacturers Group):

https.//www.picmg.org/compactpci.stm

H.2 User Documentation

Thelatest Intel NetStructure product information and manuals are available on the | ntel®
NetStructure™ Website. BIOS and driver updates are also available from this site. http://
devel oper.intel.com/desi gn/network/products/cbp/linecard.htm.

H.3 VxWorks*

The Wind River* VxWorks Programmer’s Guide is available at:

http://www.windriver.com/support/

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

131

https://www.picmg.org/compactpci.stm
http://developer.intel.com/design/network/products/cbp/linecard.htm
http://developer.intel.com/design/network/products/cbp/linecard.htm
http://www.windriver.com/support/

[]
Data Sheet Reference I nt6I @

132

This page intentionally left blank.

High Availability Software for the Intel® NetStructure™ ZT 4901 Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Index

A F

activation 32 failover 96

API fault configuration 26
hot swap 26, 77 fault remediation 25
IMPI 25 H
redundant host 25, 37 handover 96

slot control 26, 85
switchover 61
architecture
high availability CPU 11
B
backplane 17, 20
baseboard management 26
bridge mezzanine 16
C
channel alert destinations 28
channel definitions 27
chassis management 19, 25
code modularity 24
CompactPCI 31, 131
configuration 25
D
demonstration utilities 95
device
add 34
driver synchronization 35
remove 35
resume operations 34
suspend operations 35
documentation 131
driver 31, 123
design 31
states 32, 33
drivers 20
E
event logging 25
event trigger 26

hardened applications 24

high availability 11, 18, 33

host domain 97

hot swap 77

hot swap API 26

HSI_STATUS RemoveDevice 118
HSI_STATUS rhHskRegisterM sgCallback
119

HSI_STATUS rhHskSendMessage 121
HSI_STATUS StopDevice 117
HSI_STATUS SurpriseRemoval 118
HsiCloseSlotControl 85

Hsi GetBoardHealthy 87

Hs GetBoardPresent 86
HsiGetSlotCount 86

HsiGetSlotM 66Enable 91

Hsi GetSlotPower 88
HsiGetSlotReset 89
HsiOpenSlotControl 85

Hsi SetSlotEventCallback 93

Hsi SetSlotM 66Enable 92

Hsi SetSlotPower 89
HsiSetSlotReset 90

HSK 114, 115

HSK driver 113

I

imbCloseDriver 79

imbDevicel oControl 79
imbGetAsyncM essage 81
imbGetlpmiVersion 84
imbGetLocalBmcAddr 83
imblsAsyncMessageAvailable 82

Intel® NetStructure™ ZT 4901 High Availability Software Technical Product Specification 133

Download from Www.Somanuals.com. All Manuals Search And Download.

imbOpenDriver 79
imbRegisterForAsyncM sgNotification 82
imbSendl pmiRequest 81
imbSendTimedl2cRequest 80
imbSetL ocalBmcAddr 83
imbUnregisterForAsyncM sgNotification 82
Initialization 32
int rhHskUnregisterM sgCallback 120
interface 95
IPMI API 25
APl
IPMI 79
L
Linux 103, 123
M
mode
active/active 96
active/standby 96
cluster 96
modul arity
code 24
multiple mode 96
P
peripheral vendors 125
PICMG 127
portability 21
PRH_DEVICE_OBJAddDevice 116
process packet 120
Q
quiesced 32
R
redundancy 21, 23
redundant host 19, 28, 116, 119, 121, 123, 129
configuration 105
configuring infrastructure 105
definitions 39
function return values 107
installing software 103
installing source RPM 104
redundant host API 25, 37
redundant host interface 95
reporting 25
resource management 25

intel.

RH_HSK RH_PROCESS PACKET 121
RhCancel PrepareForSwitchover 65
RhClose 44

RhDisableNotification 75
RhEnableDomainStateNotification 70
RhEnableSwitchoverNotification 71
RhEnableSwitchoverRequestNatification 72
RhEnableUnsafeSwitchoverNotification 73
RhEnumeratel nstances 42
RhGetCurrentHostNumber 51
RhGetDomainAvailabilityToHost 56
RhGetDomainCount 45
RhGetDomainNumbers 46
RhGetDomainOwnership 47
RhGetDomainSlotCount 49
RhGetDomainSlotPath 47
RhGetDomainSlots 49
RhGetDomainSwConnectionStatus 66
RhGetHostAvailability 55
RhGetHostCount 51

RhGetHostName 53
RhGetHostNumbers 52
RhGetHwDestinationHost 70
RhGetHwDestinationHostAndReset 37
RhGetlnstancel D 44

RhGetPhysical SlotInformation 56
RhGetSl otChildInformation 58
RhGetSlotDomain 50
RhGetSlotSwConnectionStatus 67
RhOpen 43

RhPerformSwitchover 67
RhPrepareForSwitchover 63
RhSetHostAvailability 54
RhSetHostName 37
RhSetHwDestinationHost 68

RSS host with bridge mezzanine 17
RSS processor board 16

S

security 25

Serviceability 21

serviceability 21

dot 97

dot control 85

134 Intel® NetStructure™ ZT 4901 High Availability Software Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

dlot control API 26
software 21
division of labor 22
portability 21
redundancy 21
serviceability 21
switchover 24, 97, 129
forced 62
fully cooperative 61
hardware initiated 63
hostile 63
partially cooperative 62

switchover API 61
system management 19, 25
T
Terminology 11
threshold 26
U
user interface 95
utilities 95
\Y
VxWorks 106, 131
HSK devicedriver 113

Intel® NetStructure™ ZT 4901 High Availability Software Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

135

136

This page intentionally left blank.

Intel® NetStructure™ ZT 4901 High Availability Software Technical Product Specification

Download from Www.Somanuals.com. All Manuals Search And Download.

Free Manuals Download Website
http://myh66.com
http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	Intel® NetStructure(tm) ZT 4901 High Availability Software
	Contents
	Figures
	Figure 1. High-Availability CPU Architecture
	Figure 2. RSS Processor Board Block Diagram
	Figure 3. RSS Host with Bridge Mezzanine Block Diagram
	Figure 4. High-Availability System Backplane Architecture
	Figure 5. Layered Host Application Diagram
	Figure 6. Multi-Stated Driver Flowchart

	Tables
	Table 1. Channel Definitions for ZT 5524
	Table 2. RH Channel Alert Destinations
	Table 3. PCI Tree Information Retrieval Flags
	Table 4. Events that Generate Notification Messages
	Table 5. Slot State Flags

	Revision History

	Document Organization 1
	Introduction 2
	2.1 Terminology
	2.2 High Availability Hardware Approach
	2.2.1 Processor Boards
	2.2.2 Bridge Mezzanine
	2.2.3 Backplane

	2.3 High-Availability Software Approach
	2.3.1 Host Application
	2.3.2 System Management
	2.3.3 Backplane Device Drivers

	Host Application Software 3
	3.1 Goals of the Host Application
	3.1.1 Serviceability
	3.1.2 Portability
	3.1.3 Redundancy

	3.2 Division of Labor
	3.3 Development Issues
	3.3.1 Redundancy
	3.3.2 Graceful Switchover
	3.3.3 Hardened Applications
	3.3.4 Code Modularity

	System Management 4
	4.1 Redundant Host API
	4.1.1 IPMI API
	4.1.2 Hot Swap API
	4.1.2.1 Slot Control API

	4.2 Baseboard Management Controller Firmware Enhancements
	4.2.1 Fault Configuration
	4.2.2 Isolation Strategies
	4.2.3 IPMI RH Channel Commands
	4.2.3.1 RH Channel Enabled
	4.2.3.2 RH Channel Get RH BMC Address

	High Availability CompactPCI Device Drivers 5
	5.1 Device Driver Design
	5.1.1 Device Driver States
	5.1.1.1 Initialization
	5.1.1.2 Quiesced
	5.1.1.3 Activation

	5.1.2 Adding High-Availability Functionality
	5.1.2.1 Add Device
	5.1.2.2 Resume Operations
	5.1.2.3 Suspend Operations
	5.1.2.4 Remove Device
	5.1.2.5 Driver Synchronization

	5.2 Summary

	Redundant Host API 6
	6.1 Intel-Specific APIs
	6.1.1 RhSetHostName
	6.1.1.1 RhGetHwDestinationHostAndReset

	6.2 Redundant Host PICMG* 2.12 APIs
	6.2.1 Definitions and Types
	6.2.2 Initialization/Termination
	6.2.2.1 RhEnumerateInstances
	6.2.2.2 RhOpen
	6.2.2.3 RhClose
	6.2.2.4 RhGetInstanceID

	6.2.3 Domain and Host Information API
	6.2.3.1 RhGetDomainCount
	6.2.3.2 RhGetDomainNumbers
	6.2.3.3 RhGetDomainOwnership
	6.2.3.4 RhGetDomainSlotPath
	6.2.3.5 RhGetDomainSlotCount
	6.2.3.6 RhGetDomainSlots
	6.2.3.7 RhGetSlotDomain
	6.2.3.8 RhGetCurrentHostNumber
	6.2.3.9 RhGetHostCount
	6.2.3.10 RhGetHostNumbers
	6.2.3.11 RhGetHostName
	6.2.3.12 RhSetHostAvailability
	6.2.3.13 RhGetHostAvailability
	6.2.3.14 RhGetDomainAvailabilityToHost

	6.2.4 Slot Information API
	6.2.4.1 RhGetPhysicalSlotInformation
	6.2.4.2 RhGetSlotChildInformation

	6.2.5 Switchover API
	6.2.5.1 Switchover Scenarios and Theory of Operation
	6.2.5.2 RhPrepareForSwitchover
	6.2.5.3 RhCancelPrepareForSwitchover
	6.2.5.4 RhGetDomainSwConnectionStatus
	6.2.5.5 RhGetSlotSwConnectionStatus
	6.2.5.6 RhPerformSwitchover
	6.2.5.7 RhSetHwDestinationHost
	6.2.5.8 RhGetHwDestinationHost

	6.2.6 Notification, Reporting and Alarms
	6.2.6.1 RhEnableDomainStateNotification
	6.2.6.2 RhEnableSwitchoverNotification
	6.2.6.3 RhEnableSwitchoverRequestNotification
	6.2.6.4 RhEnableUnsafeSwitchoverNotification
	6.2.6.5 RhDisableNotification

	Hot Swap API 7
	IPMI API 8
	8.1 imbOpenDriver
	8.2 imbCloseDriver
	8.3 imbDeviceIoControl
	8.4 imbSendTimedI2cRequest
	8.5 imbSendIpmiRequest
	8.6 imbGetAsyncMessage
	8.7 imbIsAsyncMessageAvailable
	8.8 imbRegisterForAsyncMsgNotification
	8.9 imbUnregisterForAsyncMsgNotification
	8.10 imbGetLocalBmcAddr
	8.11 imbSetLocalBmcAddr
	8.12 imbGetIpmiVersion

	Slot Control API 9
	9.1 HsiOpenSlotControl
	9.2 HsiCloseSlotControl
	9.3 HsiGetSlotCount
	9.4 HsiGetBoardPresent
	9.5 HsiGetBoardHealthy
	9.6 HsiGetSlotPower
	9.7 HsiSetSlotPower
	9.8 HsiGetSlotReset
	9.9 HsiSetSlotReset
	9.10 HsiGetSlotM66Enable
	9.11 HsiSetSlotM66Enable
	9.12 HsiSetSlotEventCallback

	Demonstration Utilities 10
	10.1 Functional Description
	10.1.1 User Interface
	10.1.2 RH Interface
	10.1.2.1 Software Initiated Handovers
	10.1.2.2 Hardware Initiated Failovers
	10.1.2.3 Multiple Mode Capabilities
	10.1.2.4 Switchover Functions
	10.1.2.5 Host Domain Enumeration and Association
	10.1.2.6 Slot Information
	10.1.2.7 Notification, Reporting and Alarms

	10.1.3 IPMI Interface
	10.1.3.1 Fault Configuration
	10.1.3.2 Isolation Strategy

	10.1.4 Hot Swap Interface
	10.1.4.1 HS Functional Description
	10.1.4.2 Slot Information Structure
	10.1.4.3 Slot State

	10.1.5 Slot Control Interface

	Software Installation A
	A.1 Linux
	A.2 Installing the Redundant Host Software Kit
	A.3 Installing RH Source RPM
	A.4 Configuring the Redundant Host Infrastructure
	A.5 VxWorks (Tornado II Setup)

	Redundant Host Function Return Values B
	HSK Device Driver Interface for VxWorks* 5.4 C
	C.1 HSK Driver Object Declaration
	C.2 HSK Device Information Structure
	C.3 HSK Driver Instantiation Code Segment
	C.4 Redundant Host-Aware Callback Definitions
	C.5 RH-Aware Message Registration Definitions
	C.6 Process Packet Callback Definition
	C.7 RH-Aware Send Message Definition
	C.8 Alternate HS_CSR Interfaces

	RH Device Driver Interface for Linux* 2.4 D
	Design Guideline for Peripheral Vendors E
	E.1 Non Bus Mastering Peripheral
	E.2 Bus Mastering (DMA Capable) Peripheral
	E.3 Support for Unmodified Standard Drivers

	Porting ZT 5550 HA Applications to PICMG 2.12 F
	RH Switchover on OS Crash G
	Data Sheet Reference H
	H.1 CompactPCI
	H.2 User Documentation
	H.3 VxWorks*

	Index

