

TC9474PM 1/98 ©1998 Monarch Marking Systems, Inc. All rights reserved.

Each product and program carries a respective written warranty, the only warranty on which the customer can rely. Monarch reserves the right to make changes in the product, the programs, and their availability at any time and without notice. Although Monarch has made every effort to provide complete and accurate information in this manual, Monarch shall not be liable for any omissions or inaccuracies. Any update will be incorporated in a later edition of this manual.
©1997 Monarch Marking Systems, Inc. All rights reserved. No part of this publication may be reproduced, transmitted, stored in a retrieval system, or translated into any language in any form by any means, without the prior written permission of Monarch Marking Systems, Inc.

WARNING

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

CANADIAN D.O.C. WARNING

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la classe A prescrites dans le Réglement sur le brouillage radioélectrique édicte par le ministère des Communications du Canada.

Trademarks
MONARCH is a registered trademark of Monarch Marking Systems, Inc. 920, 924, 925 and 9474 are trademarks of Monarch Marking Systems, Inc.
Monarch Marking Systems
P.O. Box 608

Dayton, Ohio 45401

Table of Contents

INTRODUCTION. 1-1
COMMUNICATION REQUIREMENTS 2-1
Input Characteristics 2-2
Data Flow Control 2-2
Setting Communication Values 2-3
Cable Interface 2-5
MESSAGE STRUCTURES 3-1
Creating Online Data Streams 3-2
Transmitting Online Data Streams 3-2
Error Notification 3-3
Data Transmission Errors 3-3
Incorrect Data Errors 3-3
Monetary Symbols 3-4
Commands 3-4
Programming Conventions 3-5
Standard Syntax Guidelines 3-5
Standard Syntax Guidelines for Batches 3-6
Format Data 3-7
Example 3-8
Format Header Record 3-8
Text Field Record 3-9
Bar Code Field Record 3-12
Line Field 3-16
Batch Data 3-19
Batch Header Record 3-19
Entering Print Data for Fields. 3-21
Using Multiple Batches with One Format 3-23
Using Previously Defined Print Data 3-23
Batch Separators. 3-24
USING GRAPHICS 4-1
Defining Graphic Image Data 4-2
Example 4-5
Placing the Image in a Format. 4-6
Clear Image Buffer 4-8
Field. 4-8
Compressing the Data Stream 4-8
QUICK REFERENCES 5-1
Text Font Sizes 5-1
Fonts 5-1
Parallel Characters 5-2
Rotated Characters 5-2
Character Width (in Dots) 5-2
Parallel Character Width (in Dots) 5-3
Bar Codes 5-3
Bar Code Densities 5-4
Bar Code Densities 5-4
Line Width 5-5
Special Characters. 5-6
Code 128 Function Codes 5-6
ASCII Characters 5-7
Printable Characters by Font 5-8
English/Metric Conversion 5-9
ERROR MESSAGES 6-1
Diagnostic Messages 6-2
Startup Messages 6-2
Operation Messages 6-4
Printer Errors 6-5
General Warnings 6-5
General Errors 6-5
Communication Errors 6-8
Offline Messages 6-9
Data Entry or Test Print Errors 6-9
Format Entry Errors 6-11
Online Messages 6-13
Online Warnings. 6-13
Online Communication Errors 6-16
SAMPLE DATA STREAMS A-1
Formats, Text and Bar Code Fields A-2
Sample Format Data Stream A-2
Sample Batch Data Stream A-2
Line Fields A-3
Sample Format Data Stream A-3
Sample Batch Data Stream A-3
Graphic Images A-4
Sample Format Data Stream A-5
Sample Batch Data Stream A-5
Compressed Graphic Data A-6
Sample Compressed Graphic Data Stream A-6
Sample Format Data Stream A-6
Sample Batch Data Stream A-6
CODE 128 INFORMATION B-1
Bar Code Width B-2
Quiet Zone B-4
Function Codes B-5
128 Bar Code Character Sets B-6
\qquad

INTRODUCTION

This manual tells you how to enter online formats and batch data for downloading to a Monarch® $9474^{\text {TM }}$ printer.

Refer to your Operator's Handbook for general setup and maintenance procedures, an explanation of data entry and batch control for offline printing, and about creating and entering offline formats.

The 9474 printer can receive print data online from a host. During online communication, the host treats the printer as an RS-232 type printer. For the printer to communicate online, you will need an RS-232 cable. For mainframe communication, you may need a protocol converter.

Transmitting data from the host requires communication controls. See Chapter 2, "Communication Requirements" for more information.

Three types of data can be transmitted:
Format data The user-designed layout for online formats. These formats are used by online batches for printing.

These online formats can also be used offline. However, formats created offline cannot be used online.

Batch data Contains the format number and actual data to be printed on the supply. Batch data is downloaded to the printer and combined with a format stored in the printer.
 Graphic data Contains the actual pixel data which forms a graphic image.

Format, batch, and graphic data are stored when you turn the power off.

Format and graphic data may be sent at any time.
Since batch data is combined with a format for printing, the format and graphic data for a batch must reside in the printer before sending the batch.

Each data type has its own data stream structure. See Chapter 3, "Message Structures" for more information.

1-2 Introduction

COMMUNICATION REQUIREMENTS

To enable communications between the printer and the computer, the printer communications setup must match the setup for the host. The options are:

- Baud rate
- Parity
- Data flow control
- Data bits
- Stop bits

All online data uses the ASCII (American Standard Code for Information Interchange) character code for interpretation of bits as characters.

Input Characteristics

Below are the input characteristics for communications. The defaults are shown in bold print.

- Asynchronous
- Full duplex
- Selectable options:

Baud rate	$110,300,600,1200,2400,4800,9600$ No parity, Odd, Even
Parity	Xon/Xoff, Data Terminal Ready (DTR) Data flow Data bits
Seven (7) or eight (8)	
Stop bits	One (1) or two (2)

Modify these communication settings on your printer as necessary to match the settings on your host. See "Setting Communication Values" for more information.

There are three main buffers: batch, format, and graphic. The printer also has a 1024 byte input buffer which holds data until it is processed into the respective buffer(s).

Data Flow Control

The printer uses Xon/Xoff or data terminal ready (DTR) for data flow control. DTR flow control is usually required if you are using an IBM-PC, unless the PC has a special Xon-Xoff program.

In DTR mode, the printer activates DTR when the printer can accept more data from the host and deactivates when the printer's receive buffer is nearly full. In Xon/Xoff Mode, the printer sends the Xon character when the printer can accept more data and sends Xoff when the printer buffer is nearly full.

In either mode, once the printer has indicated that its buffer is nearly full (by sending Xoff or deactivating DTR), up to 134 additional characters may be accepted without losing any data.

2-2 Communication Requirements

The printer does not require any hardware or software signals from the host system in order to operate.

Flow control characters can be changed offline through the Printer Configuration mode.

The total number of formats, batches, and graphics is only limited by the amount of memory available.

Setting Communication Values

To set the communication parameters, follow the instructions below. For more information on operating the printer, refer to the Operator's Handbook.

1. From the main menu, press (1) to display Printer Configuration. Press \Leftrightarrow. You'll see

Enter password: \qquad

Enter the 1-8 character password and press \qquad .

When you first receive the printer, the password is MANAGER or ONLINE.
2. You'll see the Configuration Options menu.

Select Config Option:
Define Check Digit Schemes
Press (1) until you see Host Port Configuration. Press \Leftrightarrow to select this option. With each parameter, you can enter a new selection, or just press Θ to keep the value that is displayed.
3. You'll see the Host Option menu and the first online parameter.

Select Baud Rate: 2400

Press (1) or ${ }^{(1)}$ until you see the baud rate you need, then press Θ. You'll see

Enter Parity: N N)one, O)dd or E)ven
4. Select the parity you need and press \Leftrightarrow. You'll see

Enter Word Length [7-8]: 8
5. Select the word length you need and press \qquad . You'll see

Enter Stop Bits [1-2]: 1
6. Select the stop bits you need and press Θ. You'll see

Enter Start (XON) character: 17
7. Enter a number from 1-127 for XON flow control, or 128 for DTR flow control. You'll see

Enter Stop (XOFF) character: 19
8. Enter a number from 1-127 for XOFF flow control, or 128 for DTR flow control.

2-4 Communication Requirements

If you select DTR control (128) as the XON character, the printer automatically sets 128 (DTR control) for the XOFF character.

The Start and Stop characters must be set at 128 (DTR flow control) for IBM PC equipment.

You'll see the Configuration Options menu. Press © to exit to the main menu.

Cable Interface

The printer accepts standard RS-232C electrical signal transmissions when it is connected to a DB-25S connector configured as Data Terminal Equipment (DTE). For correct operation, use all defined pins.

For PC null modems, plug the RS-232 cable into:

- A serial (RS-232) port on the host or protocol converter
- The 25-pin RS-232 connector on your printer. Refer to your Operator's Handbook for more information.

The RS-232C cable interface is set up as a terminal device (DTE):

Pin Description

3 Received Data
$5 \quad$ Clear to Send
Data Set Ready
2 Transmitted data
4 Request to send
20 Data Terminal Ready
1 Protective ground Ground
$7 \quad$ Signal ground
All other pins are open.

The cable interface for PC null modems is shown below.

2-6 Communication Requirements

MESSAGE STRUCTURES

This chapter has information and message structures for

- Formats
- Batch Data

Graphic image data is discussed in Chapter 4, "Using Graphics."

Creating Online Data Streams

Create data streams for your 9474 printer using a standard text editor, such as EDLIN or TSO.

If you use a word processor to create data streams, make sure to save the file in text-only or unformatted mode.

Transmitting Online Data Streams

Your printer must be in Online Mode before it will accept data from your computer.

- Select Online from the Select Operating Mode menu.
- Press Θ. You'll see

Online Mode Ready:

Your printer is now ready to accept data.
Send data to the printer just as you would send any print data to a printer from your computer.

For example, if you have a file named FORMAT1.DAT on an MS-DOS system, you could send the data to your printer with these commands:

MODE COM1:2400,N,8,1,P
MODE LPT1:=COM1
PRINT FORMAT1.DAT
This set of commands would send the file FORMAT1.DAT to a printer connected to COM1 of an MS-DOS computer.

Format and graphic structures can be sent at any time.
Formats or graphics used by batch data must be sent before the batch data referencing them. Any batch sent without a previously defined format is ignored, generating an error.

3-2 Message Structures

Error Notification

Data handling and error checking are resident in the printer. If an error in transmission occurs, an error is displayed on the printer keypad display. However, no message is sent to the host and processing continues until the end of the transmission.

Certain errors may put the printer in offline mode. See Chapter 6, "Error Messages," for a list of possible messages.

Data Transmission Errors

The printer displays errors that occur during data transmission. Printer fault errors stop the machine, which will not resume printing until the operator corrects the error condition. All these messages take the system offline.

Incorrect Data Errors

The printer pauses when it receives incorrect data from the host. During the pause, it displays a message and beeps. After ten seconds, or when the operator presses Θ, the printer resumes operation. Normally, the printer loses the data that caused the error.

If the host or the communications line goes down during transmission, the printer displays the message

Waiting for command terminator. Press F1 to abort download.

If you press ${ }^{\left({ }^{-}\right)}$, the batch or format data that was being sent will be lost and must be retransmitted.

Monetary Symbols

The default monetary symbols are the U.S. dollar and cents. The ASCII characters \$ (24 hex) and ^ (5E hex) represent the dollar and cent symbols.

If you change your printer settings to use international pricing symbols, these characters will then represent the new symbols. For monetary selections that don't have a cent equivalent, the ${ }^{\wedge}$ character is changed to a space.

In EBCDIC-based systems a ^ is not available. Use ~ 94 to print a cent sign.

Commands

The following command characters are used in 9474 online data streams.

Command Character	Hex Value	Description
$\{$	7B	Open brace. Command LEADIN character
,	2C	Comma. Inter-field separator (IFS)
$;$	3B	Semicolon. Beginning of string character
I	7C	Split vertical bar. Command inter-record separator (IRS)
$\}$	7D	Close brace. Command TERMINATOR character

3-4 Message Structures

Programming Conventions

All online commands from the host follow these rules.

- All data after the TERMINATOR character (\}) and before the next LEADIN character ($\{$) is ignored.
- The hex values 7B, 7C and 7D are reserved as command delimiters. All data of a value less than 20 hex and greater than 7E hex is ignored.
- All data strings (batch data, compressed bit-map images or format data) begin with a semi-colon (3BH) and end with a TERMINATOR or inter-record separator (IRS or i (7C hex)).
- All space characters, except string definitions, are ignored.
- All strings must be less than 100 characters.

Standard Syntax Guidelines

- A format header must be the first record in your format.
- Begin the format name with the beginning of string character (;).
- Begin a record with a LEADIN character (\{).
- Make sure the length and width in these records match your supply length and width. Remember, these numbers are in tenths of millimeters, so 500 equals 50 millimeters or 5 centimeters.
- Make sure the row and column locations in the text, bar code, or line records are less than the supply length and width.
- Allow enough space to hold all the characters in the field, the bar code height, or the line end point without running off the supply.
- Field definitions may be sent in any order, regardless of field location. The last field carries priority over previous fields and overwrites the previous fields if they overlap when printed.
- To print human readable characters for Code 39, Interleaved 2 of 5, Codabar, Code 128 and MSI bar codes, create a separate text field. However, using this method with UPC or EAN bar codes may not correctly print the bar code.
- A new format with the same ID number as a previously defined format overwrites the old format. However, the old format is not overwritten until all batches queued to use the old format are completed.
- End records with a record separator (i).
- End the last record in your format with a terminator character (\}).

Standard Syntax Guidelines for Batches

Read the standard syntax guidelines and note the additional items for batches.

- A batch header must be the first record in your batch.
- For a batch header record or batch data, make sure the number in the first parameter matches the number of the format you are using.
- If you choose auto-naming (the printer assigns a batch name), make sure there are no characters or spaces between the beginning of string character (;) and the record separator (i).
- If the field is an incrementing field, you can enter any type of characters; however, only the numeric data increments.
- Send the correct format to the printer before sending the batch. Batch data without a defined format generates an error.

Format Data

Format data contains the following:

- Format identification number and name
- Supply size
- Online field definitions for text, bar code, line and graphic fields

The following offline format elements are not supported online:

- Merged fields
- Sub-fields
- Time or date fields
- User-defined check digits
- Fixed characters
- Alphanumeric distinction
- Fixed or variable length
- Price fields

You must supply these elements if you need them in your program.
The message structure used to transmit online format data is shown below, followed by an example.

```
{FORMAT ID, LENGTH, WIDTH; FORMAT_NAME |
TEXT FIELD, INCREMENT FLAG, INCREMENT VALUE, ROW,
COLUMN, MULTIPLE, TEXT FONT,
CHARACTER ROTATION, FIELD ROTATION, COLOR ;
BARCODE FIELD, INCREMENT FLAG, INCREMENT VALUE,
ROW, COLUMN, DENSITY,BAR CODE FONT,
FIELD ROTATION, HEIGHT, READABLE CHARACTERS |
LINE FIELD, ROW, COLUMN, DIRECTION, STOP,
THICKNESS ;
GRAPHIC FIELD, ROW, COLUMN :
.}
```


Example

This example has three text fields and one bar code field.

```
{F1,0558,0507;ONLINE |
T00,I,000,0475,0050,1,1,0,0,B !
T01,I,000,0406,0050,1,1,0,0,B
T02,I,000,0017,0253,1,1,0,0,B !
B00,I,000,0124,0093,1,1,0,0177,1 { }
```

The format header record (beginning with the Format ID) must always be the first record in a format data stream.

Spaces can be used in the data stream.
However, if used in a string following a semi-colon, they will be treated as printable characters.

Format Header Record

The format header record is constructed as shown below.
Syntax \{F\#\#,LENGTH,WIDTH;FORMAT NAME ;

Field

Contents
F\#\# Must begin with the letter ' F ' to represent the beginning of a format data stream.

The F is followed by a one or two digit number as the format ID
Values: 0-99
Example: F23 = Format number 23
LENGTH One to four digits to define the supply length in tenths of millimeters.

Values: \quad 191-2032 (19.1 to 203.2 mm or 0.75 to 8.0 inches)

Examples: $200=20 \mathrm{~mm}$
$201=20.1 \mathrm{~mm}$
WIDTH

3-8 Message Structures

One to four digits to define the width of the supply in tenths of millimeters (across the printhead).

Values: \quad 191-1078 (0.75 to 4.25 inches)
;FORMAT_NAME One to eight-character name assigned by the user. It can contain any ASCII alphanumeric character, including slash (/), hyphen (-), space (), dollar sign (\$), or decimal point (.).

The Format Name is a character string, so it is preceded by a semicolon (;).

Example $\{F 23,500,200$;TEXTILES :
The format number is F23, the supply length is $\mathbf{5 0}$ millimeters, the supply width is $\mathbf{2 0}$ millimeters, and the format is named "TEXTILES."

Text Field Record

The text field record is constructed as shown below:

```
Syntax T##,IFLAG,IVALUE,ROW,COL,MAG,TFONT,C-ROT,
    F-ROT,COLOR ।
```


Field

T\#\#

IFLAG each ticket is printed.

This parameter consists of one character to define the field as incremented, decremented, or constant.

Values: $\quad \mathbf{I}=$ Increment
D = Decrement

If the field does not change, define IFLAG as 'I' and set IVALUE to zero (0).

NOTE: Do not select incrementing on fields that contain a check digit.

IVALUE

ROW One to four digits to define the row location of the field on the supply. This is the distance from the the guide edge zero point at the bottom of the supply and the bottom of the field.

The zero point is 1.5 mm or 0.060 inches from the bottom of the supply. The bottom of the supply is the edge that exits the printer first.

This value is measured in tenths of millimeters (TOMMS) and must be less than the maximum length of the supply.

Values: $\quad \mathbf{0 - 2 0 3 2}$
COL One to four digits to define the column location of the field on the supply. This is the distance from the guide edge zero point at the left edge of the supply and the left edge of the field.

The zero point is 1.5 mm or 0.060 inches from the left edge of the supply.

The unit of measurement is tenths of millimeters. The range must be less than the maximum width of the supply.

Values: \quad 0-1016 (0 to 4 inches)
MAG One to two digits as the magnification factor for the font of text fields.

Values: 1-10

3-10 Message Structures

Font magnifications creating greater than 30% black print on a format may result in lower print quality.

TFONT One digit as the font for the TEXT field. See Chapter 5, "Quick References," for font samples.

Values: 1 Standard
2 Reduced
3 Bold
5 OCR-A
6 UPC HR1
7 UPC HR2
C-ROT Character rotation. The direction characters point with respect to the field.

Values: $\quad \mathbf{0}=$ tops of characters toward top of field
1 = tops of characters toward left of field
F-ROT Field rotation. The direction of the field with respect to the supply.

Values: $\quad \mathbf{0}=$ top of field toward top of supply
1 = top of field toward left of supply
2 = top of field toward bottom of supply
3 = top of field toward right of supply
COLOR One character to define the color of a text field.
Values: $\quad B=$ Black characters (42H)
W = White characters on black (57H)
Example T05, I, 0, 230, 30,1,1,0,0, B
The text field number is T05, the field does not change value with successive tickets (IFLAG $=\mathbf{I}$, increment value $=0$). The field begins 23 millimeters from the bottom and $\mathbf{3}$ millimeters from the left edge of the print area. The font appears at normal size (magnification $=1$) and the Standard font is used (1). The tops of characters point to the top of the field (character rotation $=0$) and the top of the field points to the top of the supply (rotation $=\mathbf{0}$). Characters appear in Black.

Bar Code Field Record

The bar code field record is constructed as shown below.

Syntax	B\#\#, IFLAG, IVALUE, ROW, COL, DENSITY, BFONT, F-ROT,HEIGHT,HR \|
Field	Contents
BARCODE	Must be the letter 'B' for a bar code field.
	The B is followed by one or two digits for the field number. There can be up to 100 fields per format, in any combination of text, barcode, line, or graphic fields.
	Values: 0-99
IFLAG	You can set numeric fields to increase or decrease in value as each ticket is printed.
	This parameter consists of one character to define the field as incremented, decremented, or constant.
	Values: \quad I = Increment D = Decrement

If the field does not change, define IFLAG as 'I' and set IVALUE to zero (0).

NOTE: Do not select incrementing on UPC or EAN bar codes or fields that contain a check digit.

IVALUE One to three digits to define the amount by which the value in the field increases or decreases as each ticket is printed. If the field does not change, define IFLAG as ' I ' and set IVALUE to zero (0).

NOTE: The first number in the count sequence must contain the same number of digits as the highest number to be counted. For example, to count the numbers 1 to 999, the first number in the sequence must be entered as 001.

Values: 0-999
ROW One to four digits to define the row location of the field on the supply. This is the distance from the guide edge zero point at the bottom of the supply and the bottom of the field.

3-12 Message Structures

The zero point is 1.5 mm or 0.060 inches from the bottom of the supply. The bottom of the supply is the edge that exits the printer first.

This value is measured in tenths of millimeters (TOMMS) and must be less than the maximum length of the supply.

Values: 0-2032
NOTE: The minimum row location for serial bar code fields is 23 (0.09 inches)

COL

DENSITY One digit for the bar code density for Interleaved 2 of 5, Code 128, MSI, Code 39, and UPC/EAN bar codes.

Values: 1-5
Some bar codes do not support all 5 values.
For the actual densities for these values, see Chapter 5, "Quick References."

BFONT One digit indicating which bar code font to use.
Values: 1 UPC-A
UPC-E
3 Interleaved 2 of 5
4 Code 39
5 Codabar
6 EAN-8
7 EAN-13
8 Code 128
9 MSI
10 UPC/EAN+2
11 UPC/EAN+5

F-ROT Field rotation. The direction of the field with respect to the supply.

$$
\begin{array}{ll}
\text { Values: } & \mathbf{0}=\text { top of field toward top of supply } \\
& \mathbf{1}=\text { top of field toward left of supply } \\
& \mathbf{2}=\text { top of field toward bottom of supply } \\
& \mathbf{3}=\text { top of field toward right of supply }
\end{array}
$$

HEIGHT One to four digits for the bar code height in tenths of millimeters. The value should be less than the length or width of the supply.

Values: $\quad \mathbf{5 0 - 2 0 3 2}$ (5.1 to 203.2 mm or 0.2 to 8.0 inches)
(Human readable characters) One digit for the location of human readable characters printed with a UPC or EAN bar code. If no value is given, no human readable characters are printed.

Values: $\quad \mathbf{0}=$ No human readable characters printed
1 = Human readable printed above the bar code
2 = Human readable printed below the bar code
NOTE: Always use the HR parameter to generate the human readable text for a UPC or EAN bar code. If you manually insert human readable text, the barcode may not print accurately.

Example $\quad \mathrm{B} 11, \mathrm{I}, 1,70,30,1,4,0,120,0$ i
The bar code field number is B11, the field increases by 1 with successive tickets (IFLAG = I, increment value =1). The field begins 7 millimeters from the bottom and 3 millimeters from the left edge of the print area. The bar code density is 6.63 characters per inch (density $=1$, code 39), and Code 39 (4) is used. The top of the field points to the top of the supply (rotation $=0)$. The height of the bar code is 12 millimeters and no human readable characters appear with this bar code (0).

The following special restrictions apply to online bar codes:
UPCA
You must send a leading zero, 11 digits of data and a check digit (13 digits total).

3-14 Message Structures

UPCE

EAN13

EAN8

12 of 5

Code 39

Codabar

Code 128

The printer automatically prints a leading zero for this bar code. You must send data and a check digit (7 digits total).

You must send 12 digits of data and a check digit (13 digits total).

You must send 7 digits of data and a check digit (8 digits total).

NOTE: If the check digit is incorrect or omitted from a UPC or EAN bar code, the printer will automatically place the correct check digit in the bar code.

This bar code has no check digit. The printer automatically prints the start and stop characters, so only the data must be sent. The length of the data is variable. If the data has an odd number of digits, add a leading zero to make the length even.

The start and stop characters must be placed at the beginning and end of the data before it is sent to the printer. The start and stop character is an asterisk (*). The length of the data is variable.

The start and stop characters must be placed at the beginning and end of the data before it is sent to the printer. The start and stop characters are a combination of lowercase a, b, c, or d . The length of this data is variable.

You can send characters for Function Codes $1-4$ as fixed data when defining a code 128 field and as batch data when printing.

To send the Function Codes, use a tilde (~) followed by a three digit ASCII code as shown in the following table.

For example, to print a string of bar code data with function code F2 as the fourth character...

123(F2)5678 send this string of characters...

123~1295678

ASCII Code	Function Code
~ 134	F1
~ 129	F2
~ 128	F3
~ 132	F4

Two additional bar codes are supported as extensions to both UPC and EAN bar codes.
+2 Send exactly two digits for this bar code.
+5 Send exactly six digits (a five-digit bar code and a one-digit check digit).

Line Field

The message structure below transmits a line field. This data stream defines the bit map to form a graphic line field. Use the line field to emphasize data by printing a line or box.

You can have up to 100 line images. The line record can be placed in a format data stream anywhere following the format header record. Lines are counted as fields, just like text or bar code fields. When determining the number of fields in your format, count each line as a separate field.

```
Syntax
L\#\#, ROW, COLUMN, DIRECTION, STOP, THICKNESS |
```

3-16 Message Structures

Field

COLUMN One to four digits to define the column location of the field on the supply. This is the distance from the guide edge zero point at the left edge of the supply and the left edge of the field.

The zero point is 1.5 mm or 0.060 inches from the left edge of the supply.

The unit of measurement is tenths of millimeters. The range must be less than the maximum width of the supply.

Values: $\quad \mathbf{0 - 1 0 1 6}$ (0 to 4 inches)
DIRECTION One digit to define the direction of the line.
Values: $\quad \mathbf{0}=$ Vertical
1 = Horizontal
STOP One to four digits to define the stop position (Row or Column, dependent on the DIRECTION setting) for the line.

Values: 1-2032
THICKNESS One or two digits for the line thickness in dots. 1 dot $=1 / 192$ inch

Values: $\mathbf{1 - 1 5}$

Example L22,400,100,1,190,5

The line field number is L22, the line begins 40 millimeters from the bottom and 10 millimeters from the left edge of the print area. The line is horizontal (direction $=1$) and ends 19 millimeters from the left edge of the supply. The line is 5 dots thick.

Example

This example draws a simple 1 -inch box starting at row 50 and column 50 on a 2 " x 2.5 " tag, as shown below.

Format

```
{F1,635,508;BOX ।
L0,50,50,0,304,3 i
L1,50,50,1,304,3 i
L2,50,304,0,304,3 !
L3,304,50,1,316,3 \ }
```

Batch
$\{B 1,1,0,1,1,1, C ; B O X . T E S T \mid\}$
Note that line L3 is longer than the other 3 lines to complete the box in the upper right corner.

3-18 Message Structures

Batch Data

The batch data stream contains:

- Batch information:
- format number (layout for the print image)
- print quantity
- supply definition
- item description (batch name)
- Print image:
- field numbers
- data to be printed in each field

The message structure used to provide the printed data for an online format is shown below. An example follows.

```
{ B##,QUANTITY, CUT,REP, PARTS, 0,MODE; BATCH_NAME |
T##;(..print data..) I
B##;(..print data..) i
.}
```


Batch Header Record

The batch header is the first record in the batch data stream.

```
Syntax
```

Field
Contents

B\#\# Must begin with the letter ' B ' to begin a batch data stream.
The B is followed by the one or two digit number that matches the format number. This is the number at the beginning of the format record.

Values: 0-99
QUANTITY One to four digits for the quantity to print in a given batch.
Values: 1-9999
CUT/TAKEUP On printers with a knife:

One digit to control how tickets are cut.
Values: $\quad \mathbf{0}=$ no cut
1 = cut each ticket in the batch (except last ticket)
2 = cut each ticket in the batch (including last ticket in batch)
3 = cut between batches
NOTE: Do not use option 2 if your supply is less than 4 inches long (1016 tomms) or more than 8 inches long (2032 tomms)

When using option 2, the first 0.7 inches of the supply cannot be used for printing.

On non-knife printers:

On a 9474 with no knife, this parameter controls the backing paper takeup, instead of the knife.

Values: $\quad \mathbf{0}=$ print tags with no backing paper.
$\mathbf{1}=$ print labels and take up the backing paper.
REP
One to four digits for the supply repetition for cutting, and increment/decrement field.

Values: 1-9999
PARTS One digit for the number of parts across the supply.
Values: $\mathbf{1 - 5}$
RESERVED Enter 0.
MODE One character to define the mode of printing, or batch separator.

Values: $\quad \mathbf{0}=$ separator off.
1 = double length separator (use for 924 or 925 stacker). 3 mm extra length tag on 920 stacker.
2 = normal length separator with 3 mm black stripe.
$3=3 \mathrm{~mm}$ extra length tag with 6 mm stripe.
NOTE: If using value $0,1,2$, or 3 , do not use a separate batch separator packet.

3-20 Message Structures

$\mathbf{C}=$ Continuous
$\mathbf{D}=$ On Demand

If you enter D (On Demand) in the MODE field on a printer with a knife, the value will default to C (Continuous).
;BATCH_NAME One to eight characters for the name of the batch. A priority batch name must begin with a decimal. For example: .SOCKS12.

Each batch should have a unique name, or you can omit the name for automatic batch naming. If multiple batches are sent with the same name, all batches are stored with the same name. If you omit the batch name, the printer will generate unique names which begin with the letters "AUTO" and end with a 4-digit number. The 4-digit number is an increment and can have a value from 1-9999 (example: AUTO1354, where 1354 equals the increment).

Example $\quad\{\mathrm{B} 11,200,2,5,2,0,3 ;$ i

The batch prints data using format 11 and prints 200 tickets. The printer cuts after each ticket is printed, including the last ticket (2) and each ticket will print 5 times. This is a two-part ticket. The format prints 2 times horizontally across each ticket. A double-length separator prints between batches (3). The batch name is automatically assigned by the printer, because there are no characters between the semi-colon and the record separator.

Entering Print Data for Fields

Enter the data to print in each field after the batch header record as shown.

```
Syntax {B##,QUANTITY,CUT,REP,PARTS,0,MODE;
BATCH_NAME |
T##;print data.. |
B##;print data.. I
.
.}
```

T\#\# The number of the text field to print (enter the number in place of \#\#).

B\#\# The number of the bar code field to print (enter the field number in place of \#\#).
;print data $\mid \quad$ Enter the data you want to print in this field.
This character string begins with a semi-colon (;) and can be 1 to 100 characters long. Place a record separator (i) at the end of this string.

If there is a text field you don't want to use, enter that field number and a semi-colon with no print data.

Example

This example contains data to print the label shown below.

```
{B1,0012,1,01,1,0,C;PTEST |
T00;TEST FORMAT1 |
T01;S/N 97464B i
T02;$12.34 ;
B00;0012345678905 ; }
```


The batch prints the phrase
"TEST FORMAT 1" in text field
T00, "S/N 97464B" in text field T01, "\$12.34" in text field T02, and "0012345678905" in bar code field B00.

If consecutive batch data streams use the same format, send only the changed data fields. See the following section, "Using Previously Defined Print Data."

3-22 Message Structures

Using Multiple Batches with One Format

You can send multiple batches for any format previously loaded into the printer. To do so, send the format to the printer, then send as many batches as you want to print data on that format.

This allows you to send multiple batches without sending a new format with each batch.

Using Previously Defined Print Data

When sending multiple batches for one format, you can "re-use" your print data. On consecutive batches, the data in a field does not change, omit that field from the later batch.

When you leave out any field number that was specified in the preceding batch, the data used in the preceding batch will print on following batches until new field data is entered.

For example, batch 1 below prints a date in text field T01. Since batch 1 and batch 2 are printed on the same day, batch 2 can leave out field T01. Since T01 was defined in the preceding batch, it will automatically print in batch 2.

Batch 1: Batch 2:

```
{ B12,1,0,1,1,0,C; ;
T01;12/31/90 |
T02;Stock #43768
T03;100' Hose }
```

```
{ B12,1,0,1,1,0,C; i
```

{ B12,1,0,1,1,0,C; i
T02;Stock \#52014
T02;Stock \#52014

```
T03;Sprinkler }
```

```
T03;Sprinkler }
```

If two fields overlap, do NOT use this feature. If fields overlap, you must send the format before each batch.

Batch Separators

This command selects the use of batch separators. A batch separator is a tag with a wide black line across the top or a double length tag and is last tag in a batch. Your Operator's Handbook shows the type of batch separator used by your printer.

When printing online, add 1 to your batch quantity. The batch separator does not add a tag to the total number of tags in a batch. (In offline operation a batch separator increases the batch count by one tag.)

The command structure is shown below, followed by an example.

If using this batch separator packet, make sure the batch header "MODE" value is set to C.

Syntax

Field

S
TYPE

Contents

Must be the letter ' S ' to identify the batch separator selection.
A single digit to turn the batch separator selection on or off. The resulting separator depends on the type of stacker you are using.

3-24 Message Structures

Values $0,1,2$, or 3 as shown in the table below.

Stacker Type Data Stream	none	$\mathbf{9 2 0}$	$924 / 925$
$\{\mathrm{~S} 0\}$	No separator	No separator	No separator
$\{\mathrm{S} 1\}$	Double length tag with no stripe	3 mm extra length tag with 6 mm stripe	Double length tag with no stripe
$\{\mathrm{S} 2\}$	Normal length tag with 3 mm stripe	Normal length tag with 3 mm stripe	Normal length tag with 3 mm stripe
$\{\mathrm{S}\}\}$	3 mm extra length tag with 6 mm stripe	3 mm extra length tag with 6 mm stripe	3 mm extra length tag with 6 mm stripe

Format data stream.

```
{F 12, 560, 508;SMALL2IN |
T1, I, 0, 300, 50, 1, 1, 0, 0, B :
T2, I, 0, 200, 50, 1, 1, 0, 0, B \
T3, I, 0, 150, 50, 1, 1, 0, 0, B \
T4, I, 0, 100, 50, 1, 1, 0, 0, B \
T5, I, 0, 050, 50, 1, 1, 0, 0, В { }
```


Batch data stream.

\{S0 \}

```
{B 12, 1, 0, 1, 1, 0, C;SMALL2IN :
T1;Separators off. |
T2;Line 2. |
T3;Line 3. |
T4;Line 4. |
T5;Line 5. { }
```


Turn batch separator on; print another batch.

\{S1 \}
\{B 12, 1, 0, 1, 1, 0, C;SEP.ON
T1; Separators on. |
T2;Line 2.
T3; Line 3.
T4; Line 4.
T5;Line 5. | \}

Turn batch separator off.

\{S0 \}

3-26 Message Structures

USING GRAPHICS

There are two stages to printing a graphic:

- Create the data stream for the graphic image
- Place the image into a format.

To print a format with a graphic image, transmit data to the printer in this order:

Graphic data stream to define the graphic image
Format data stream that references the graphic image
Batch data to print the format.

Defining Graphic Image Data

Graphic images are created by a series of dots printed in a specific pattern. This pattern results from a process of turning dots "ON" or "OFF" on the printhead.

We will use the terms "black dots" to describe a dot that is ON, and "white dots" for a dot that is OFF.

This section describes how to build a data stream to create this pattern with your printer.

This example shows how black dots and white dots form an image of the letter A.

To create a data stream for this image, start with the bottom row. Count the number of white dots and black dots, in order of appearance in each row.

For example, rows 1 through 4 (at the bottom) in the image above have these dot counts:

Row 1: 4 White, 8 Black, 19 White, 8 Black, 4 White
Row 2: 4 White, 8 Black, 19 White, 8 Black, 4 White
Row 3: 4 White, 8 Black, 19 White, 8 Black, 4 White
Row 4: 5 White, 7 Black, 19 White, 7 Black, 5 White
4-2 Using Graphics

The data stream uses letters to identify dot counts.

- CAPITAL letters represent black dots.
- lowercase letters represent white dots.

Using the chart below, the data stream for row 1 would be:

Dot count:

Row 1: 4 White, 8 Black, 19 White, 8 Black, 4 White

Data Stream:

dHsHd
(4 white $=\mathbf{d}$, 8 black $=\mathbf{H}, 19$ white $=\mathbf{s}$)
Use multiple letter codes to indicate strings of same-color dots.
For example: 30 black dots = ZD

$$
9 \text { white dots = ccc }
$$

Coding Chart												
Black Dots									White Dots			
\#dots	Code	\# dots	Code	\# dots	Code	\# dots	Code					
1	A	14	N	1	a	14	n					
2	B	15	O	2	b	15	o					
3	C	16	P	3	c	16	p					
4	D	17	Q	4	d	17	q					
5	E	18	R	5	e	18	r					
6	F	19	S	6	f	19	s					
7	G	20	T	7	g	20	t					
8	H	21	U	8	h	21	u					
9	I	22	V	9	i	22	v					
10	J	23	W	10	j	23	w					
11	K	24	X	11	k	24	x					
12	L	25	Y	12	I	25	y					
13	M	26	Z	13	m	26	z					

The graphic data stream contains a graphic header record followed by data streams for each row of dots in the image.

Syntax

```
{G##,0,0,0,0 |
;...dot codes... i
;...dot codes... I
;...dot codes... '
.
.}
```


Field

Contents

G\#\#

COLUMN
LINES
DOTS
;dot codes

Must begin with the letter ' G ' to identify this as a graphic data stream.

The G is followed by a one or two digit number to identify the graphic image. Later you will use this number to insert the graphic into a format.

Values: 0-99

NOTE: If this graphic is used in offline batch entry, the printer assigns a name of GPH\#\# where \#\# is the ID number assigned here.

ROW Enter 0.
Enter 0.
Enter 0.
Enter 0.
The first row of dot codes corresponds to the bottom row of dots in the image. Essentially, this means you are building the graphic image upside down in the data stream.

Note that since this record is a character string, it begins with a semi-colon (;). You can place up to 100 characters in each row.

Do not put any spaces in the dot code character string.

Example	
	; dHsHd :
	; dHsha !
This graphic data stream	; dHsHa
generates the letter A from the	; eGsGe
grid earlier in this section. The	; eHqHe
format and batch data streams to	; fGqGf
print a sample tag follow the	; $£$ HoHf
graphic data stream.	; gGoGg
The graphic is assigned a number of 1 and it is 46 dots tall.	; i Hmmg
	;hGMGh
	;hGMGh
The graphic data stream uses the same guidelines for structure and syntax as the format data stream does. See "Standard Syntax Guidelines" in Chapter 3 for more information.	; ifMFi
	;jEMEj
	; jEMEj
	; jEMEj
	; kHgHk
	;1GgGl
	;1HeHl
	;1HeHl
	; mGeGm
	; mGeGm
	; nGcGn
	; nGcGn !
	; nGcGn
	; OFCFo
	; OGaGo \|
	; pFaFp
	; PFAFP
	; qEAEq
	; q EAEq !
	; q EAEq
	; rDADr
	; rDADr
	; sCACs
	; scacs
	; sCACs
	; tBABt
	; tbabt
	; ucu !
	; uCu !
	;ucu
	; vAv : \}

Placing the Image in a Format

The message structure below places a graphic field in a format.
You can have up to 100 graphic images. The graphic record can be placed in a format data stream anywhere following the format header record.

Graphics are counted as fields, just like text or bar code fields. When determining the number of fields in your format, count each graphic as a separate field.

```
Syntax G##, ROW, COLUMN ।
```

If graphic fields overlap with other fields in the data stream, the last field in the data stream will dominate.

Field

COLUMN

Contents
Must begin with the letter ' G ' for a graphic field.
The G is followed by one or two digits for the graphic number. Enter the number you assigned to the graphic in the graphic data stream.

Values: 0-99
One to four digits to define the row location of the graphic on the supply. This is the distance from the the guide edge zero point at the bottom of the supply and the bottom of the field.

The zero point is 1.5 mm or 0.060 inches from the bottom of the supply. The bottom of the supply is the edge that exits the printer first.

This value is measured in tenths of millimeters (TOMMS) and must be less than the maximum length of the supply.

Values: $\mathbf{0 - 2 0 3 2}$
One to four digits to define the column location of the field on the supply. This is the distance from the guide edge zero point at the left edge of the supply and the left edge of the field.

The zero point is 1.5 mm or 0.060 inches from the left edge of the supply.

The unit of measurement is tenths of millimeters. The range must be less than the maximum width of the supply.

Values: $\quad \mathbf{0 - 1 0 1 6}$ (0 to 4 inches)
The following format data stream uses the graphic data defined earlier in this chapter. The graphic is inserted 20 mm from the bottom and 20 mm from the left edge of the supply.
$\{$ F11, 550, 507; LETTER-A |
G1, 200, 200 i
$\mathrm{TO}, \mathrm{I}, 0,400,100,1,1,0,0, B$ | \}
The following batch data stream prints the following tag:

```
{B11,1,1,1,1,0,C;LETTER-A |
TO;LETTER-A GRAPHIC | }
```

Example

The graphic number 1 is inserted into the format 10 millimeters from the bottom and 4 millimeters from the left edge of the print area.

Clear Image Buffer

This command clears all or selective graphics from the image buffer. Once graphic data is sent to the printer, that graphic stays in memory until a clear image buffer command is sent.

Syntax \{ C\#\# \}

Field

Contents
$C \quad$ Must be the letter ' C ' to identify the clear image buffer command.
\#\#
This optional parameter specifies a particular graphic to be cleared from memory. It must match the number assigned in the graphic data stream. If omitted, ALL graphics in memory will be deleted.

Example

\{C\} Clears all graphics from the printer.
\{C4\} Clears only graphic number 4.

Compressing the Data Stream

Image data usually consists of a large amount of repetitive data. Therefore, the printer uses a data compression algorithm for the graphic message structure. Here's how it works.

1. Any image is defined as a matrix of cells.
2. Each row of the matrix consists of a series of consecutive ON (black) or OFF (white) cells. The range is $1-26$, represented by adding either a hex 40 (black) or hex 60 (white). Cells that print black are represented by the upper case letters ' A ' through ' Z ' in the file sent to the printer. Cells that print white are represented by the lowercase letters 'a' through ' z ' in the file. Consecutive cells greater than 26 require multiple letters.

Example: $\quad 39$ consecutive white cells are represented by the letters ' $z m$ ' (i.e. ' z ' produces 26 white cells followed by 'm' or 13 more white cells).

4-8 Using Graphics
3. Each row of the matrix is terminated by the command inter-record separator, split vertical bar (i). However, the last row of the matrix ends with the TERMINATOR command, closed brace (\}).
4. In addition to compressing consecutive cells, repetitive lines of compressed row data can be combined. For example, if twelve rows have the same data (;zm), a number can be added at the beginning of the line to repeat the line (;12zm).
5. The following example shows how you can compress the "Letter A" data stream. The long version is on the left. The compressed version of the same data stream is on the right.

Long Version

\{G 1,0,0,0,0	\{G 1,0,0,0,0
; dHsHd	;3dHsHd
; dHsHd	;eGsGe :
; dHsHd	; eHqHe
;eGsGe	;fGqGfi
; eHqHe :	;2fHoHf
;fGqGfi	; gGoGg ;
; fHoHf	; gHmHg ;
;fHoHf	;3hGMGh
; gGoGg ;	;2iFMFi
; gHmHg :	;3jEMEj
;hGMGh	;2kHgHk
;hGMGh	;IGgGI!
;hGMGh	;21HeHI
;iFM Fi ${ }^{\text {I }}$;2mGeGm
;iFM Fi ${ }^{\text {I }}$;3nGcGn!
;jEMEj I	;oFcFo :
;jEMEj	;oGaGol
;jEMEj	; pFaFp :
; kHgHk !	; PFAFp :
; kHgHk !	;3qEAEq
;IGgGII	;2rDADr
; ${ }^{\text {HeHI }}$;3sCACs
; HeHI ;	;2tBABt
;mGeGm I	;3uCu
;mGeGm I	; vAvi
;nGcGn!	\}
; nGcGn -	
;nGcGni	
;oFcFo	
;oGaGo:	
;pFaFp	
;pFAFp	
;qEAEq	
;qEAEq ${ }^{\text {d }}$	
;qEAEq	
;rDADr	
;rDADr	
;sCACs	
;sCACs	
;sCACsi	
;tBABt	
; tBABt !	
; $u C$ u	
; uCu	
; $u C$ u	
;vAvi\}	

4-10 Using Graphics

QUICK REFERENCES

Text Font Sizes

The 9474 fonts are selected in Printer Configuration in offline mode only. Be sure the fonts selected at the printer are compatible with the format and batch data you are downloading.

Fonts

The 9474 fonts are proportional (each character takes only as much space as it needs). Uppercase I is the narrowest character and results in the most characters per inch. Uppercase \mathbf{M} is the widest and results in the fewest characters per inch. In the following table uppercase I was used to calculate the most characters per inch. Uppercase M was used to calculate the fewest characters per inch.

If you rotate the characters (with the top of the characters toward the left or right side of the stock) you will get the characters per inch shown in the table labeled "Rotated Characters."

Parallel Characters

Value/Font	Characters/Inch		Character Height (in.)
	\mathbf{I}	\mathbf{M}	
1/Standard	21.3	12.0	0.07
2/Reduced	64.0	24.0	0.20
3/Bold	19.2	7.1	0.10
5/OCR-A	10.1	10.1	0.10
6/UPC HR1	19.2	13.7	0.08

Rotated Characters

Font	Characters/Inch
Standard	10
Reduced	14
Bold	5
OCR-A	10

Character Width (in Dots)

The dots per character is the same for all characters. The examples below show the difference between parallel characters and serial characters.

5-2 Quick References

Parallel Character Width (in Dots)

The following table shows the character width in dots. Uppercase I is the narrowest character (fewest dots per character). Uppercase M is the widest character (most dots per character).

Value/Font	Dots Wide		ICG*
	\mathbf{I}	\mathbf{M}	
1/Standard	7	14	2
2/Reduced	2	7	1
3/Bold	7	24	3
5/OCR-A	16	16	3
6/UPC HR1	12	12	2
7/UPC HR2	10	10	1

*Inter-character gap

Bar Codes

The table below lists bar code selections and values.

Value	Dots Wide
1	UPC-A
2	UPC-E
3	Interleaved 2 of 5
4	Code 39
5	Codabar
6	EAN-8
7	EAN-13
8	Code 128
9	MSI
10	UPC/EAN+2
11	UPC/EAN+5

Bar Code Densities

The samples below show the difference between parallel and serial bar codes.

Bar Code Densities

Value	Bar Code	Density (Char/in)
1	Code 39 I 2 of 5 Code 128* MSI UPC/EAN	```6.63 12.02 8.74 (alphanumeric) 17.48 (numeric only) 6.87 80% standard density```
2	Code 39 I 2 of 5 Code 128* MSI UPC/EAN	3.32 6.87 5.83 (alphanumeric) 11.66 (numeric only) 5.34 120\% standard density
3	Code 39 I 2 of 5 Code 128* MSI	```4 . 0 1 4 . 9 3 4.37 (alphanumeric) 8.74 (numeric only) 4 . 0 1```
4	$\begin{aligned} & \text { Code } 39 \\ & \text { I } 2 \text { of } 5 \end{aligned}$	not supported 3.01
5	Code 39	6.01

*For more information on Code 128, see Appendix B.

Line Width

5-4 Quick References

The following table shows the horizontal and vertical line widths.

Line Number	Appearance	Line Width	
		Inches	MM
1		. 005	. 13
2		. 010	. 26
3		. 015	. 40
4	-	. 021	. 53
5		. 026	. 66
6		. 031	. 79
7		. 036	. 92
8		. 042	1.06
9		. 046	1.16
10		. 052	1.32
11		. 057	1.44
12		. 062	1.57
13		. 067	1.70
14		. 072	1.82
15		. 078	1.98

Special Characters

The following table shows the ASCII code for special characters available in the standard font.

ASCII Code	Symbol Description
~ 128	Hashed box
~ 129	Pound or Lira
~ 130	Yen
~ 131	Kronna
~ 132	Deutsche mark
~ 133	Markka
~ 134	Schilling
~ 135	Half sign
~ 136	Rupee

Code 128 Function Codes

The following table shows the ASCII code for the Code 128 function codes.

ASCII Code	Function Code
~ 134	F1
~ 129	F2
~ 128	F3
~ 132	F4

ASCII Characters

The following table shows the characters available in each font. HR1 and HR2 are human readable fonts for bar codes.

Character	Std	Reduced	OCRA	Bold	HR1	HR2
\#	$\begin{aligned} & \hline \text { yes } \\ & \text { yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { yes } \\ & \text { yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
$\begin{aligned} & \$ \\ & \% \end{aligned}$	yes yes	yes yes	yes no	yes no	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
\&	$\begin{gathered} \phi \\ \text { yes } \end{gathered}$	$\begin{gathered} \phi \\ \text { yes } \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{gathered} \not \subset \\ \text { no } \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
*	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	yes	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{gathered} \hline \text { no } \\ \text { yes } \\ \hline \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
$\begin{aligned} & \text {) } \\ & {[} \end{aligned}$	yes [yes yes	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
$\begin{gathered} \text {] } \\ \text { '(grave) } \end{gathered}$	$\begin{gathered} \text {] } \\ \text { yes } \end{gathered}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
$\begin{array}{r} \{ \\ \} \end{array}$	yes yes	yes yes	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
,(comma)	$\begin{aligned} & \text { yes } \\ & \text { yes } \\ & \hline \end{aligned}$	yes yes	f \neg	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	no no	$\begin{aligned} & \text { no } \\ & \text { no } \\ & \hline \end{aligned}$
"	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
$\begin{gathered} = \\ \text { _(underscore) } \end{gathered}$	$\begin{aligned} & \hline \text { yes } \\ & \text { yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	no	$\begin{aligned} & \hline \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
+	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	yes	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
'(apostrophe)	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	yes	$\begin{gathered} \text { yes } \\ \text { no } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { no } \\ & \text { no } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { no } \\ & \text { no } \end{aligned}$
:	$\begin{aligned} & \hline \text { yes } \\ & \text { yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{array}{r} \text { no } \\ \text { 1 ho } \\ \hline \end{array}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { yes } \\ \text { yes } \end{gathered}$	$\begin{aligned} & \hline \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
$\begin{aligned} & ? \\ & 1 \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { no } \\ \neq \end{gathered}$	$\begin{gathered} \text { no } \\ \neq \end{gathered}$	$\begin{aligned} & \hline \text { no } \\ & \text { no } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$
$\begin{gathered} 1 \\ 0-9 \end{gathered}$	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$
$\begin{aligned} & A-Z \\ & a-Z \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	yes yes	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{gathered} \text { HN* } \\ \text { no } \end{gathered}$

yes = what you enter is what prints.
no = character does not exist in this font; nothing prints.
*
Uppercase H and N are the only alphabetic characters that print in the Human Readable fonts. All other characters are numeric.

Printable Characters by Font

Following are the printable characters (not at actual size). Human Readable 1 and Human Readable 2 are not available offline.

5-8 Quick References

Inches	TOMM	Inches	TOMM	Inches	TOMM	Inches	TOMM
-	-	0.060	15	0.075	19	0.100	25
0.125	31	0.150	38	0.175	44	0.200	50
0.225	57	0.250	63	0.275	70	0.300	76
0.325	82	0.350	89	0.375	95	0.400	101
0.425	108	0.450	114	0.475	121	0.500	127
0.525	133	0.550	140	0.575	146	0.600	152
0.625	159	0.650	165	0.675	171	0.700	178
0.725	184	0.750	191	0.775	197	0.800	203
0.825	209	0.850	216	0.875	222	0.900	228
0.925	235	0.950	241	0.975	247	1.000	254
1.025	260	1.050	267	1.075	273	1.100	279
1.125	286	1.150	292	1.175	298	1.200	305
1.225	311	1.250	317	1.275	324	1.300	330
1.325	336	1.350	343	1.375	349	1.400	356
1.425	362	1.450	368	1.475	375	1.500	381
1.525	387	1.550	394	1.575	400	1.600	406
1.625	413	1.650	419	1.675	425	1.700	432
1.725	438	1.750	445	1.775	450	1.800	457
1.825	463	1.850	470	1.875	476	1.900	483
1.925	489	1.950	495	1.975	502	2.000	508
2.025	514	2.050	520	2.075	527	2.100	533
2.125	540	2.150	546	2.175	552	2.200	558
2.225	565	2.250	571	2.275	578	2.300	584
2.325	590	2.350	597	2.375	603	2.400	609
2.425	616	2.450	622	2.475	628	2.500	635
2.525	641	2.550	648	2.575	654	2.600	660
2.625	667	2.650	673	2.675	679	2.700	686
2.725	692	2.750	698	2.775	705	2.800	711
2.825	717	2.850	724	2.875	730	2.900	736
2.925	743	2.950	749	2.975	755	3.000	762
3.025	768	3.050	775	3.075	781	3.100	787
3.125	794	3.150	800	3.175	806	3.200	813
3.225	819	3.250	825	3.275	832	3.300	838
3.325	844	3.350	850	3.375	857	3.400	863
3.425	869	3.450	876	3.475	882	3.500	889
Inches	T0MM	Inches	T0MM	Inches	TOMM	Inches	T0MM
3.525	895	3.550	902	3.575	908	3.600	914
3.625	921	3.650	927	3.675	933	3.700	939
3.725	946	3.750	952	3.775	959	3.800	965
3.825	971	3.850	978	3.875	984	3.900	990
3.925	996	3.950	1003	3.975	1009	4.000	1016
4.025	1022	4.050	1028	4.075	1035	4.100	1041
4.125	1048	4.150	1054	4.175	1060	4.200	1067
4.225	1073	4.250	1079	4.275	1086	4.300	1092

Quick References 5-9

4.325	1099	4.350	1105	4.375	1111	4.400	1118
4.425	1124	4.450	1130	4.475	1137	4.500	1143
4.525	1149	4.550	1156	4.575	1162	4.600	1168
4.625	1175	4.650	1181	4.675	1187	4.700	1194
4.725	1200	4.750	1206	4.775	1212	4.800	1219
4.825	1225	4.850	1232	4.875	1238	4.900	1245
4.925	1251	4.950	1257	4.975	1263	5.000	1270
5.025	1276	5.050	1283	5.075	1289	5.100	1295
5.125	1302	5.150	1308	5.175	1314	5.200	1321
5.225	1327	5.250	1333	5.275	1340	5.300	1346
5.325	1352	5.350	1359	5.375	1365	5.400	1371
5.425	1378	5.450	1384	5.475	1390	5.500	1397
5.525	1403	5.550	1409	5.575	1416	5.600	1422
5.625	1429	5.650	1435	5.675	1441	5.700	1448
5.725	1454	5.750	1460	5.775	1467	5.800	1473
5.825	1479	5.850	1486	5.875	1492	5.900	1499
5.925	1505	6.950	1511	5.975	1518	6.000	1524
6.025	1530	6.050	1537	6.075	1543	6.100	1549
6.125	1556	6.150	1562	6.175	1568	6.200	1575
6.225	1581	6.250	1588	6.275	1594	6.300	1600
6.325	1606	6.350	1613	6.375	1619	6.400	1626
6.425	1632	6.450	1638	6.475	1644	6.500	1651

TOMM $=$ Tenths of millimeters

5-10 Quick References

ERROR MESSAGES

This chapter provides explanations of your printer's errors. There are four types of errors:

- diagnostic
- startup
- operation
- offline

If you have problems loading supplies or performing maintenance, refer to the Operator's Handbook. If you have a problem you can't solve, contact your Monarch service representative.

Before you call...

- Select Version from the main menu and press \Leftrightarrow. The screen displays information about the software installed in your machine.
- Write down the information and give it to the service representative when you call.

Diagnostic Messages

These messages appear if the printer fails internal testing. If the printer stops at one of these messages, turn the power off. Then turn it on again. If the problem persists, call Monarch Service.

Message

Error - Turn power off
Wait 10 seconds, then turn on
Head test failure
RAM read/write failure.
ROM checksum failure.

Startup Messages

The printer displays the following messages when you turn the power on. Messages are listed in the order they appear.

If the printer stops at one of these messages, turn the power off. Wait at least 10 seconds, then turn it on again. If the problem persists, call Monarch Service.

Message

Copyright (c) 1988-89
Monarch Marking (Model 94\#\#)
Select Supply Type: B A)lign, B)lack Mark or D)ie Cut

Description/Action

A copyright statement for the software.

Press \Leftrightarrow if you are using black mark or aperture supplies.

Type D and press Θ if you are using die cut supplies.

Type A and press Θ to calibrate the printer.

6-2 Error Messages

Message

Enter new date: 01/01/89 (MM/DD/YY)

Description/Action

Press Θ to keep the date shown or to skip the prompt.

Enter a new date in the format shown in parentheses and press \rightarrow

Preventative maintenance message that is displayed when the counter reaches three million inches. This message is displayed every time the printer is powered up until the counter is reset by a service technician.

Press \Leftrightarrow to keep the time shown or to skip the prompt.

Type new time and press \Leftrightarrow. Enter the time in the format shown in parentheses and press Θ.

Check for visible print problems. Continue printing or call Service.

If the print problem is in a bar code, call Monarch Service. You can check the quality of your bar code if you have a bar code verifier.

Operation Messages

There are two kinds of operation messages:

- Error messages
- Warning messages

The messages use the following formats:
ERROR: (function)
Error description text.
WARNING: (function)
Warning message text.

Function indicates the part of the program where the error originated, such as Batch

Control or Format Entry.

Warning and error messages can be:
Informative The printer displays an informative message messages for several seconds, then resumes operating. An informative message is usually displayed for 3 seconds in offline operation and for 10 seconds in online operation.

Or ...
Failure messages

The printer displays a failure message and stops operating until the operator presses \Leftrightarrow.

6-4 Error Messages

Printer Errors

These messages occur during online or offline operation.

General Warnings

These warning messages are listed in alphabetical order.
Message Description/Action
Demand is not You tried to change the print mode in Printer available. Options. On Demand printing is not available on a printer with a knife.

Load supply and The next batch to print needs a different press ENTER. supply than what is loaded.

Load the right supply and press \rightarrow.
Printing suspended While printing, you have selected Batch until exit. Control to check the print queue. Printing will resume when you exit Batch Control.

Unassigned You turned the printer off before it completed memory recovered. the task in progress. You see this message when you turn the printer back on.

Check all stored items (formats, batches, passwords, graphic files, etc.) for missing or bad data before continuing.

General Errors

These messages are listed in alphabetical order.
Message Description/Action
Access denied. You entered an invalid password.

Message Description/Action

Cannot cancel. You cannot cancel the batch in its current state. You can only cancel a batch that has a status of P (Print) or I (Image). (You can use delete if you want to remove a batch with any other status.)

Cannot delete. You cannot delete the batch in its current state. You can only delete a batch that has a status of \mathbf{Q} (Queue). (You can use cancel if you want to remove a batch with a \mathbf{P} or \mathbf{I} status.)

Duplicate cost A character appears more than once in the code character. Entered Char portion of your cost code.

Type the cost code again, without repeating any characters.

Field \#\# bad font/barcode.

Field \#\# invalid data.

The font or barcode for the field number shown (\#\#) is not defined properly.

Check the field definition in Format Entry and correct the field.

The data includes characters not available in the character set specified for this field.

Check the field definition in Format Entry for the valid font.

Field \#\# graphic You have requested a graphic that is not missing. available; the file has not been downloaded from the host.

Download the graphic file and request the graphic again or request another graphic.

Message

Field \#\# extends off tag.

Head open.

Insufficient memory.

Knife jam.

Description/Action

The field you are defining does not fit on the tag.

Change the field location, rotation, or font size so it fits on the tag. error. examine.
$\begin{array}{ll}\text { Hot head. } & \text { The print head is too hot to operate. This is } \\ \text { normally due to continual printing of formats }\end{array}$
$\begin{array}{ll}\text { Hot head. } & \text { The print head is too hot to operate. This is } \\ \text { normally due to continual printing of formats }\end{array}$ with a lot of printed data (more than 30% of the tag contains print).

Let the printer cool before continuing.
There is not enough memory available for the item you are trying to store.

Delete formats or batches to free memory.
The knife is jammed or blocked, or you are
attempting to cut supply that is smaller than
The knife is jammed or blocked, or you are
attempting to cut supply that is smaller than 1.2 inches.

Clear the knife, then try to print again. If supply is too small, press \digamma_{i} to override the message and load the correct supply before attempting to print.

Merge assimilation You have made an error in defining a merge

No batches to Batch Control is available only when there are
The ribbon is improperly positioned.
Reposition the cassette or ribbon loading device so it is firmly seated. Close the print head. field.

Enter the merge field again to correct it. batches in the print queue.

Message Description/Action

No formats You cannot enter Data Entry mode until a available to print. format is defined.

Ribbon problem. The ribbon cassette is depleted or jammed. The ribbon may be broken. Check the ribbon and reload or replace it if necessary.

Stacker Fault. The stacker is full or the stacker track is jammed. Empty the stacker before trying to print again.

Supply problem. There is a problem with the feed mechanism. Reload the supply if necessary.

The 9474 will also display this message if the backing paper takup reel is full, the printer is out of stock, or the stock is the incorrect size for the format that was loaded.

Communication Errors

The following errors are caused by communication problems in the printer.

Message Description/Action

All comm Software Error. Call Monarch Service. channels busy.

Invalid comm Software Error. Call Monarch Service. channel.

Invalid file type. Software Error. Call Monarch Service.
Receive buffer full. The host did not stop transmission after it received an XOFF character or after DTR went inactive. Check communication setup at the host.

6-8 Error Messages

Message

Receive framing error.

Receive overrun error.

Receive parity error.

Description/Action

Host communication protocol doesn't match machine. Check communication setup at the host.

Host communication protocol doesn't match machine. Check communication setup at the host.

Host communication protocol doesn't match machine. Check communication setup at the host.

Offline Messages

Data Entry or Test Print Errors

The following errors occur during data entry or test printing. The messages are listed in alphabetical order.

Message Description/Action

CD verify failed. You entered an incorrect check digit in a field that requires a check digit.

Improper field You are trying to enter an invalid number of length. characters in a Fixed or Optional/Fixed field.

A Fixed field requires exactly the number of characters shown by the dashes on the screen. An Optional/Fixed field requires either the exact number of characters shown by the dashes on the screen, or 0 characters. Enter the correct number of characters for the field.

Message
 Description/Action

Invalid cost code character(s).

You are trying to enter characters in a cost code field (in Data Entry) that are not defined in the cost code. Check your data to be sure it is correct, then enter the data again.

Machine busy. You are trying to print a test tag, but the print queue is not empty. The print queue must be empty to perform a test print. Wait until all batches have printed, then try again to print the test tag.

Must be all digits. You are trying to enter non-numeric characters in a UPC, I 2 of 5 , EAN, or MSI bar code field. You can only enter numeric data for these fields. Check your data to be sure it is correct, then enter the data again.

Must be an even You are trying to enter an odd number of \# of characters. characters for an I 2 of 5 bar code field. Check your bar code data to be sure it is correct, then enter the data again.

No fields defined. You are trying to print a test tag, but you have no fields defined. You must define at least one field before you can test a format.

Price CD verify You entered incorrect data in a UPC or EAN failed. bar code field. Check your data to be sure it is correct, then enter the data again.

Typing mismatch. You are trying to enter data for a Verify field (you must enter the same data twice), but your entries do not match. Check your data to be sure it is correct, then enter the data again.

Format Entry Errors

Message	Description/Action
CD scheme not	
defined.	You selected a check digit scheme number in Format Entry that is not defined. Define the check digit scheme in Printer Configuration.
Cannot save	You have not completed any field definitions for this format.
format.	You are trying to delete a format used by a batch that is printing or waiting to print. Be sure you are trying to delete the right format. Wait until the batch that uses the format has in use. Cannot delete.
printed, then delete the format.	

Message

Incompatible field for sub.

Invalid barcode height.

Invalid field reference.

Invalid magnification value.

Invalid supply length

Invalid supply width.

Invalid thickness value.

Merge field limit is 26 chars.

Scheme \# uses \# marked chars.

Description/Action

You tried to use a line field or a graphic field in a subfield. You cannot use these field types as part of a subfield.

You tried to define a bar code height as less than 0.20 inch. Bar codes must be at least 0.20 inch (5.08 mm or 38 dots) in height.

You are trying to define a subfield or a merged field. You have chosen a link with a field number greater than the subfield or merged field. Choose a link with a field number less than the merged field.

You entered a font magnification value that is outside the valid range of 1-10.

The specified supply length is longer or shorter than the printer can print.

The specified supply width is wider or narrower than the printer can print.

You are defining a line field. You entered a value for the line width that is outside the valid range of 1-15.

You are trying to define a merged field with a field length of more than 26 characters.

You are defining a check digit field and you have selected a check digit scheme (\#). The number of characters you marked is wrong for the scheme you chose. Be sure you have selected the right check digit scheme, then mark the characters again.

Message	Description/Action
Scheme \# uses	You are defining a check digit field and you \#ave selected a check digit scheme (\#). The number of characters you marked is wrong for the scheme you chose. Be sure you have selected the right check digit scheme, then mark the check digits again.
Stop location	You are defining a line field, and have given a stop location that is off the tag. Check your format and enter the correct stop location.
Sub/merge range.	You are trying to delete a field that is part of a
requires this field.	subfield or a merged field. Be sure you are trying to delete the right field. Remove the
field you want to delete from the subfield or	
merged field. Then try to delete the field	
again.	

Online Messages

The following messages occur during online communication when the transmitted data contains errors. To recover from the error, correct the data, then re-transmit it.

Online Warnings
Message Description/Action
Column > format The column definition for a field location is width. greater than the format width definition.

Message Description/Action

Column > head The column definition for a field location is width. greater than the width of the printhead.

Data string The data string length exceeds 30 characters. too long.

Format for batch not found.

The format for the batch being sent has not been downloaded.

Graphic not found. The graphic specified for a field has not been downloaded.

Identifier The format, batch, line, or graphic identifiers out-of-range. are out of range.

Invalid barcode field.

Insufficient or incorrect data was used to create a barcode field.

Invalid command. An unknown command was received.

Invalid cut value. The cut value is not $\mathbf{0}$ or $\mathbf{1}$.

Invalid data field. A field specified to receive data does not exist on the format. The batch is not created.

Invalid incr/decr The increment/decrement value is outside value. the valid range of 0-999.

Invalid label length. The specified supply length is longer or shorter than the printer can print.

Invalid label width The specified supply width is wider or narrower than the printer can print.

Invalid number of The number of parts value is outside the valid parts value. range of 1-5.

6-14 Error Messages

Message Description/Action

Invalid orientation The line or character orientation value is not value. 0 or 1.

Invalid separator The batch separator value is outside the valid value. range of 0-3.

Invalid text field. Insufficient or incorrect data was used to create a text field.

Invalid thickness The line thickness value is outside the valid value. range of 1-15.

Name descriptor The format or batch name is longer than 8 too long.

No field to create format.

Qnty/Mult out-of-range.

Row > format length.

Row > stock length.

Stop location out-of-range.
characters.

The print quantity or print multiple is outside
The format you are sending contains no fields. the valid range of 1-4 digits.

The row definition for a field location is greater than the format length.

The row definition for a field location is greater than the supply length.

The stop location for a line field is off the tag or the stop location is the same as the start location.

Online Communication Errors

These errors are caused by communication problems between the host computer and the printer during online operation.

Message Description/Action
All comm Software Error. Call Monarch Service. channels busy.

Invalid comm Software Error. Call Monarch Service. channel.

Invalid file type. Software Error. Call Monarch Service.
Receive buffer full. The host did not stop transmission after it received an XOFF character or after DTR went inactive. Check communication setup at the host.

Receive framing error.

Host communication protocol doesn't match machine. Check communication setup at the host.

Receive overrun error.

Host communication protocol doesn't match machine. Check communication setup at the host.

Receive parity Host communication protocol doesn't match error.

Waiting for command terminator. Press F1 to abort download. machine. Check communication setup at the host.

No data is being received from the host.
Check to see if the host or the communications line is down. Press © F_{1} to discontinue communications (the batch or format data will be lost and must be retransmitted).

6-16 Error Messages

SAMPLE DATA STREAMS

This appendix contains sample data streams for formats, batches, and graphics. The illustrations show the tags that are printed from these data streams.

Formats, Text and Bar Code Fields

This example shows a standard format with three text and one bar code field.

Sample Format Data Stream

```
{F1,0550,0507;ONLINE |
TOO,I,000,0475,0050,1,1,0,0,B !
T01,I,000,0406,0050,1,1,0,0,B !
T02,I,000,0017,0253,1,1,0,0,B ।
B00,I,000,0124,0093,1,1,0,0177,1 | }
```


Sample Batch Data Stream

```
{B1,2,3,1,1,0, c; BATCH1 |
TOO;TEST FORMAT 1 \
T01;S/N 97464B |
T02;$12.34 ;
B00;0012345678905 | }
```


A-2 Sample Data Streams

Line Fields

This example shows how to use line fields to create a box.

Sample Format Data Stream

```
{F2,0550,0507;BOX |
L0,50,50,0,304,10 |
L1,50,50,1,304,10 ;
L2,50,304,0,304,10 
L4,304,50,1,316,10 { }
```


Sample Batch Data Stream

\{B2,1,0,1,1,1,C;BOXTEST | \}

Graphic Images

This Graphic data stream precedes the format that uses it.
Sample Graphic Data
Stream

```
{G3,0,0,0,0 }
; dHsHd !
; dHsHd |
; dHsHd |
; eGsGe |
; eHqHe |
; fGqGf |
; fHoHf |
; fHoHf |
; gGoGg |
;gHmHg |
;hGMGh ।
;hGMGh I
;hGMGh I
;iFMFi |
;iFMFi |
; jEMEj |
;jEMEj i
;jEMEj i
; kHgHk |
;kHgHk |
;lGgGl |
;1HeHl 
;1HeHl 
;mGeGm |
; mGeGm |
; nGCGn |
; nGcGn |
;nGcGn !
; OFCFO 
;OGaGo
; pFaFp 
; PFAFp
;qEAEq
; qEAEq |
;qEAEq |
;rDADr
;rDADr |
; sCACs |
; sCACs 
; sCACs |
; tBABt 
```

A-4 Sample Data Streams

Sample Format Data Stream

\{F3, 0550, 0507; GRAPHIC |
TO, I, 0, 400, 100, 1, 1, 0, 0, B :
G3, 200, 200 | \}

Sample Batch Data Stream

$\{\mathrm{B} 3,1,1,1,1,0,1 ; \operatorname{LETTER}-\mathrm{A}$ i
TO; LETTER A GRAPHIC | \}

Compressed Graphic Data

This example shows the same graphic data stream in compressed format.

Sample Compressed Graphic Data Stream

> \{G3,0,0,0,0
> ;3dHsHd :
> ;eGsGe:
> ;eHqHe :
> ;fGqGf;
> ;2fHoHf
> ;gGoGg :
> ; gHmHg :
> ;3hGMGh:
> ;2iFM Fi
> ;3jEMEj
> ;2kHgHk
> ;IG gGI;
> ;21HeHI;
> ;2mGeGm:
> ;3nGcGn:
> ;OFcFo:
> ;oGaGo
> ; pFaFp :
> ;pFAFp :
> ;3qEAEq
> ;2rDADr:
> ;3sCACs
> ;2tBABt
> ;3uCu:
> ;vAvi\}

Sample Format Data Stream

\{F3,0550,0507;G RAPHIC
T0, I,0,400,100,1,1,0,0,B
G3,200,200 \}

Sample Batch Data Stream

A-6 Sample Data Streams

CODE 128 INFORMATION

The 128 bar code is divided into 3 character sets (Code A, Code B , and Code C). Depending on the character set used, the same bar pattern can be one of three characters. Table 1, at the end of this appendix, lists the characters in each character set.

Code A contains upper case letters (A-Z), special characters, and control characters. Code A does not have lower case letters.

Code B contains upper and lower case alphanumeric characters and special characters. Code B does not have control characters.

Code C
character set contains pairs of numbers. In code C, each bar pattern represents a pair of numbers, ranging from 00 to 99.

When the data contains at least four numbers in a row, 128 switches to code C, then prints one bar pattern for each pair of numbers. This doubles the numeric data per inch.

Therefore, it may be better to pad numeric data with a zero if it has an odd number of characters. The bar codes below show the difference between an odd number of numeric characters and an even number of numeric characters. Do this only if your system can ignore leading zeros.

Bar Code 1
Data = 1234567

Bar Code 2
Data $=01234567$

Bar Code 2 is not as wide as Bar Code 1 because all of its characters are printed with bar symbols from code C.

Only 6 of Bar Code 1's characters are printed in code C. The other character has to be printed in code B. Whenever 128 switches from one character set to another, it adds bar patterns that tell a scanner to switch character sets. These extra bar patterns cause wider bar codes.

Bar Code Width

The width of a Code 128 bar code is determined this way:

- If there are four or more numbers in a row, an even number of them print in code C.
- If there are four or more numbers in a row with an odd quantity (e.g., 7 numbers in a row), one of them prints in code B.
- All other alphanumeric characters are printed in code B.

The printer determines which character set to use based on the data. No external control of character set selection is required.

For a given quantity of data, the widest bar code will be the one that switches character set most often. Suppose your data has 14 characters (8 numeric +6 alphabetic).

The bar code for data arranged like this:
Bar code 1
Data $=1234 A B C 5678 D E F$
is wider than data
 arranged like this:

Bar code 2

Data $=12345678$ ABCDEF

B-2 Code 128 Information

Here's why bar code 1 is wider:

- The 8 numbers in each example appear in groups of four or more, and they appear in even-numbered quantities, therefore, all 8 numbers will use code C.
- The 6 alphabetic characters will use code B.

Look at the example again. This time, data is underlined when the character set changes.

The bar code for data arranged like this:

Bar code 1
 Data $=1234 \underline{A B C} 5678 \underline{D E F}$

is wider than data arranged like this:

```
Bar code 2
Data = 12345678ABCDEF
```


This shows that bar code width varies depending on how data is arranged. Separating numeric and alphabetic characters reduces the number of character set changes. Fewer character set changes reduce bar code width.

The table below shows the characters per inch for Code 128. The table shows the values for numeric data, and for alphanumeric data at each of the three densities available on the printer. The characters per inch for your bar code will be somewhere between these two values, depending on the mixture of numeric and alphabetic characters. For a precise calculation of the width of your bar code, refer to the specification for the Code 128 bar code.

Density	Numeric Data	Alpha-numeric Data
1	17.48	8.74
2	11.66	5.83
3	8.74	4.37

Quiet Zone

When you estimate the area you'll need for the bar code, remember to add the length of the quiet zone. The quiet zone is an area of white space required at the beginning and end of each bar code. The minimum size of the quiet zone is 0.10 , or 10 times the width of the narrowest bar code element, whichever is greater. The tables below show the minimum size of the quiet zone at each density. For wand scanning, the quiet zone should be 0.25 to 0.35 inch.

Density	Quiet Zone
1	0.10 inch
2	0.15 inch
3	0.20 inch

B-4 Code 128 Information

Function Codes

Code 128 has four function codes (f1-f4). These special characters can be entered as:

- fixed characters when defining a code 128 field (Format Entry)
- data when printing a batch (Data Entry).

Enter the special 128 function codes as follows:

to select this
 Press these keys
 function code

F2 then $1 \quad f 1$
F2 then 2 f2
F2 then $3 \quad f 3$
F2 then $4 \quad f 4$
The function code is displayed as $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$, or F_{4}.

128 Bar Code Character Sets

Any of the following characters can be used in online communication with the printer by sending the character's standard decimal value. To enter specific characters from the keyboard, refer to "Using the Keyboard" in Chapter 4 of the Operator's Handbook.

Values listed on the chart are for reference only; they are not decimal values.

Value	Code A	Code B	$\begin{aligned} & \text { Code } \\ & \text { C } \end{aligned}$	Bar Pattern				BS
0	S	SP	00	2	1	2	2	22
1	!	!	01	2	2	2	1	22
2	"	"	02	2	2	2	2	21
3	\#	\#	03	1	2	1	2	23
4	\$	\$	04	1	2	1	3	22
5	\%	\%	05	1	3	1	2	22
6	\&	\&	06	1	2	2	2	13
7	,	,	07	1	2	2	3	12
8	((08	1	3	2	2	12
9))	09	2	2	1	2	13
10	*	*	10	2	2	1	3	12
11	+	+	11	2	3	1	2	13
12	,	,	12	1	1	2	2	32
13	-	-	13	1	2	2	1	32
14	.	.	14	1	2	2	2	31
15	1	1	15	1	1	3	2	22
16	0	0	16	1	2	3	1	22
17	1	1	17	1	2	3	2	21
18	2	2	18	2	2	3	2	11
19	3	3	19	2	2	1	1	32
20	4	4	20	2	2	1	2	31
21	5	5	21	2	1	3	2	12
22	6	6	22	2	2	3	1	12

B-6 Code 128 Information

Value	$\begin{aligned} & \text { Code } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { Code } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { Code } \\ & \text { C } \end{aligned}$	Bar Pattern				
				B	S	B	S	BS
23	7	7	23	3	1	2	1	31
24	8	8	24	3	1	1	2	22
25	9	9	25	3	2	1		22
26	:	:	26	3	2	1	2	21
27	;	;	27	3	1	2	2	12
28			28	3	2	2	1	12
29	=	=	29	3	2	2	2	11
30			30	2	1	2	1	23
31	?	?	31	2	1	2	3	21
32	@	@	32	2	3	2	1	21
33	A	A	33	1	1	1	3	23
34	B	B	34	1	3	1	1	23
35	C	C	35	1	3	1	3	21
36	D	D	36	1	1	2	3	13
37	E	E	37	1	3	2	1	13
38	F	F	38	1	3	2	3	11
39	G	G	39	2	1	1	3	13
40	H	H	40	2	3	1	1	13
41	I	I	41	2	3	1	3	11
42	J	J	42	1	1	2	1	33
43	K	K	43	1	1	2	3	31
44	L	L	44	1	3	2	1	31
45	M	M	45	1	1	3	1	23
46	N	N	46	1	1	3	3	21
47	0	O	47	1	3	3	1	21
48	P	P	48	3	1	3	1	21
49	Q	Q	49	2	1	1	3	31
50	R	R	50	2	3	1	1	31
51	S	S	51	2	1	3	1	13
52	T	T	52	2	1	3	3	11
53	U	U	53	2	1	3	1	31
54	V	V	54	3	1	1	1	23
55	W	W	55	3	1	1	3	21
56	X	X	56	3	3	1	1	21
57	Y	Y	57	3	1	2	1	13
58	Z	Z	58	3	1	2	3	11
59	[[59	3	3	2	1	11
60	1	1	60	3	1	4	1	11
61]]	61	2	2	1	4	11
62	\wedge		62	4	3	1	1	11
63			63	1	1	1	2	24
64	$\bar{N} U L$	-	64	1	1	1	4	2
65	SOH	a	65	1	2	1	1	24
66	STX	b	66	1	2	1	4	21

Code 128 Information B-7

Value	$\begin{aligned} & \text { Code } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { Code } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { Code } \\ & \text { C } \end{aligned}$	Bar Pattern				
				B	S	B	S	BS
67	ETX	C	67	1	4	1	1	22
68	EOT	d	68	1	4	1	2	21
69	ENQ	e	69	1	1	2	2	14
70	ACK	f	70	1	1	2	4	12
71	BEL	g	71	1	2	2	1	14
72	BS	h	72	1	2	2	4	11
73	HT	i	73	1	4	2	1	12
74	LF	j	74	1	4	2	2	11
75	VT	k	75	2	4	1	2	11
76	FF	1	76	2	2	1	1	14
77	CR	m	77	4	1	3	1	11
78	SO	n	78	2	4	1	1	12
79	SI	O	79	1	3	4	1	11
80	DLE	p	80	1	1	1	2	42
81	DC1	q	81	1	2	1	1	42
82	DC2	r	82	1	2	1	2	41
83	DC3	s	83	1	1	4	2	12
84	DC4	t	84	1	2	4	1	12
85	NAK	u	85	1	2	4	2	11
86	SYN	v	86	4	1	1	2	12
87	ETB	w	87	4	2	1	1	12
88	CAN	x	88	4	2	1	2	11
89	EM	y	89	2	1	2	1	41
90	SUB	z	90	2	1	4	1	21
91	ESC	\{	91	4	1	2	1	21
92	FS		92	1	1	1	1	43
93	GS	\}	93	1	1	1	3	41
94	RS		94	1	3	1	1	41
95	US	DEL	95	1	1	4	1	13
96	FNC3	FNC3	96	1	1	4	3	11
97	FNC2	FNC2	97	1	1	1	1	13
98	SHIFT	SHIFT	98	4	1	1	3	11
99	CODE C	CODE C	99	1	1	3	1	41
100	CODE B	FNC4	CODE B 1	1	4	1	3	1
101	FNC 4	CODE A	CODE A 3	1	1	1	4	1
102	FNC1	FNC1	FNC1	4	1	1	1	31
			B	S	B	S	B	SB
	STOP		2	3	3	1	1	12

B-8 Code 128 Information

Index

	E
entering print data error	3-21
messages	6-1
extended bar codes	3-15

Index-1

Index-2

Index-3
\qquad

Index-4

For supplies, service, or assistance call toll free:
1-800-543-6650 (In the U.S.A.)
1-800-263-4650 (In Canada)
www.monarch.com
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

