
WebSphere® Adapters

WebSphere Adapter Toolkit User Guide
Version 6 Release 2

Version 6 Release 2

���

WebSphere® Adapters

WebSphere Adapter Toolkit User Guide
Version 6 Release 2

Version 6 Release 2

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 211.

December 2008

This edition applies to version 6, release 2, modification 0 of and to all subsequent releases and modifications until
otherwise indicated in new editions.

To send us your comments about this document, email mailto://doc-comments@us.ibm.com. We look forward to
hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2008. All rights reserved. US Government Users
Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

© Copyright International Business Machines Corporation 2006, 2008.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

mailto://doc-comments@us.ibm.com

Contents

WebSphere Adapter Toolkit 1
IBM WebSphere Adapter Toolkit technology
overviews 2

IBM WebSphere Adapters 2
Architectural overview 4
How metadata is used at build time and run time 7
Using Enterprise Metadata Discovery to build
services 7

IBM WebSphere Adapter Toolkit overview 8
New Connector Project wizard overview 9
Resource Adapter Deployment Descriptor Editor
overview 10
Adapter Foundation Classes overview 10

IBM WebSphere Adapter Toolkit tasks 11
IBM WebSphere Adapter Toolkit installation
requirements 11
Samples overview 12

Running the Twine Ball sample using WebSphere
Integration Developer 13
Running the Twine Ball sample using Rational
Application Developer. 26
Troubleshooting the samples. 28

Using the New Connector Project wizard 28
Launching the New Connector Project wizard . . 29
Specify project properties 31
Specify project facets 32
Specify connector project module settings . . . 32
Specify resource adapter properties 33
Specify generation options 34
Generating an IBM WebSphere Resource Adapter 35
Generating a JCA resource adapter 49
Generated code and deployment descriptor. . . 55

Using the Resource Adapter Deployment Descriptor
editor 56

Displaying the deployment descriptor 56
Modifying deployment descriptor properties . . 66

Editing deployment descriptor source 67
Implementing code from the IBM WebSphere
Adapter Toolkit 68

Foundation Classes implementation overview . . 68
Data model 69
Inbound event notification 79
Inbound callback event notification 89
Outbound support 97
Data and metadata 115
Enterprise Metadata Discovery general
interfaces and implementation for application
adapters 123
Enterprise Metadata Discovery interfaces and
implementation for technology adapters . . . 157
Structured record implementation 162
Data binding implementation 166
Bidirectional language support 167
Problem determination 168

Validating the code 193
Testing enterprise metadata discovery (EMD) of
the adapter 193
Testing the adapter in unmanaged mode . . . 194
Testing the adapter in managed mode 197
Validating code with Rational Application
Developer and WebSphere Application Server . 203

Creating and exporting a resource adapter . . . 206
Reference. 208

Terminology. 208

Notices 211
Programming interface information 213
Trademarks and service marks 213

Index 215

© Copyright IBM Corp. 2006, 2008 iii

iv WebSphere Adapters: WebSphere Adapter Toolkit User Guide

WebSphere Adapter Toolkit

The IBM® WebSphere® Adapter Toolkit provides the development tools, libraries
and sample code to assist you in creating JCA resource adapters.

With the toolkit you may create either of the following:
v A resource adapter based on the interfaces defined by the JCA Resource

Adapter 1.5 specification. Choose this path if your goal is developing a resource
adapter that can run either unmanaged or managed within any JCA 1.5
compliant container.

v A resource adapter that extends the WebSphere Adapter Foundation Classes
library. Choose this path if your goal is to create a resource adapter
implementation that can run in a managed server runtime environment like
WebSphere Process Server and that exhibits the common functionality and
extended qualities of service offered specifically by WebSphere Adapters.
WebSphere Adapters are based on the JCA 1.5 specification. These adapters are
supported on multiple runtime environments and brokers.

Implementing a WebSphere adapter allows you to take advantage of the quality of
services offered in the WebSphere Adapter foundation classes (AFC) and the
flexibility of being able to run the adapter on runtime environments other than
WebSphere Process Server.

In either case, the toolkit provides a project creation wizard that generates the code
that you then implement. In addition, the toolkit provides a specialized editor that
facilitates the task of creating and configuring a resource adapter deployment
descriptor.

This document focuses primarily on development of resource adapters and
artifacts that extend the WebSphere Adapter Foundation Class library.

The following figure illustrates the process of developing a JCA resource adapter
using the WebSphere Adapter Toolkit.

Using the WebSphere Adapter Toolkit

© Copyright IBM Corp. 2006, 2008 1

The development process using the IBM WebSphere Adapter Toolkit includes the
following as shown in the illustration:
1. Run the New JCA Resource Adapter Project wizard.

The wizard generates a resource adapter deployment descriptor and code. The
code can include sequence of calls, log and trace messages and comments.

2. Use the Resource Adapter Deployment Descriptor Editor to configure your
deployment descriptor.

3. Implement the code to correctly interface with your enterprise information
system (EIS).

4. Export the resource adapter as a resource adapter archive (RAR) or enterprise
application archive (EAR) file.

The purpose of this documentation

Adapter development requires a great deal of software engineering, which varies
from customer to customer. The process of integrating adapter functionality into
your business processes will require you to design, build and test the solution that
utilizes the adapter. The purpose of the WebSphere Adapter Toolkit documentation
is to lay out the requirements of the architecture and provide guidance on how
and when to implement the various facets of it, so that you can apply your
engineering discipline to the adapter-specific requirements, capabilities and
architecture.

IBM WebSphere Adapter Toolkit technology overviews
The IBM WebSphere Adapter Toolkit helps developers implement the Adapter
Foundation Classes, which establish a WebSphere Adapter standard for building
resource adapters that conform to the Java 2 Connector Architecture (JCA) 1.5
specification.

IBM WebSphere Adapters
An IBM WebSphere Adapter implements the Java 2 Enterprise Edition (J2EE)
Connector architecture (JCA), version 1.5. Also known as resource adapters or JCA
adapters, WebSphere Adapters enable managed, bidirectional connectivity between
enterprise information systems (EIS) and J2EE components supported by multiple
server runtime environments, including WebSphere Process Server and WebSphere
Application Server.

IBM WebSphere adapters support outbound request processing and inbound event
processing.

Note: IBM WebSphere adapters support outbound and inbound processing for
WebSphere Process Server and outbound processing only for WebSphere Application
Server.

Outbound processing refers to a process in which request data flows from a client
application to the EIS. In an outbound processing scenario, the adapter acts as the
connector between the application component and the EIS. The adapter provides a
set of standard operations, which process either after-image or delta style business
objects. An outbound request can read data from or write data to the EIS.

Inbound event processing refers to a process that is initiated by an event on the
EIS. In inbound event processing the adapter converts events generated from the
EIS into business objects and sends the business object to the client application.

2 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Inbound event notification complements outbound request processing, enabling
adapters to provide bidirectional communication between business processes and
EIS applications.

The IBM WebSphere Adapter portfolio of adapters is based on the Java 2 Platform,
Enterprise Edition (J2EE) standard. JCA is a standard architecture for integrating
J2EE applications with enterprise information systems. Each of these systems
provides native APIs for identifying a function to call, specifying its input data,
and processing its output data. The goal of the JCA standard is to provide an
independent API for coding these functions, to facilitate data sharing, and to
integrate J2EE applications with existing and other enterprise information systems.
The JCA standard accomplishes this by defining a series of contracts that govern
interactions between an EIS and J2EE components within an application server.

Fully compliant with the JCA standard, WebSphere Adapters have been developed
to run on multiple server runtimes. A WebSphere Adapter does the following:
v Integrates with multiple server runtimes, including WebSphere Process Server,

WebSphere Enterprise Service Bus, and WebSphere Application Server.
v Connects an application running on WebSphere Process Server with an EIS.
v Enables data exchange between the application and the EIS.

Each WebSphere Adapter is made up of the following:
v An implementation of the (J2EE) Connector Architecture (JCA), version 1.5,

which supports WebSphere Process Server and WebSphere Application Server.
v An enterprise metadata discovery component.

You use this component with the external service discovery wizard to introspect
the EIS to discover and generate business objects and other service component
architecture (SCA) artifacts that are compiled in a standard enterprise
application archive (EAR) file. You can also use the external service discovery
wizard to build a service (rather than discover a service). For example, you can
use the enterprise service discovery wizard to build services (based on search
criteria you provide), and generate business objects and interfaces.
The enterprise metadata discovery component implements version 1.1 of the
enterprise metadata discovery specification.

Files

WebSphere Process Server Enterprise information
system

Business
function

WebSphere
AdapterJ2E component

Figure 1. A WebSphere Adapter

WebSphere Adapter development overview 3

WebSphere adapters utilize a format-independent data model for representing data
objects. In a WebSphere Process Server or WebSphere Enterprise Service Bus
runtime environment, WebSphere adapters use an extension of the service data
objects (SDO) for representing data objects.

Architectural overview
In conjunction with the appropriate EIS-specific subclasses, the WebSphere Adapter
Foundation Classes provide a JCA-compliant resource adapter implementation that
can be managed by the application server to enable bidirectional connectivity to an
enterprise information system (EIS).

Outbound requests, those requests intended for the EIS, can be sent to the resource
adapter by any J2EE component via the Common Client Interface (CCI) defined by
the JCA specification. For inbound events, events within the EIS sent to the
adapter, message-driven beans that implement the InboundListener interface are
registered with the adapter by the application-server enabling them to receive any
appropriate inbound events from the EIS via the adapter.

Regardless of the whether data is intended for inbound or outbound delivery, the
resource adapter (i.e. Adapter Foundation Classes plus EIS-specific subclasses) acts
as a conduit for any J2EE application to communicate with the EIS.

Runtime architecture component model

The adapter runtime architecture is a collection of components interacting through
well-defined interfaces and based on the J2EE Connector Architecture (JCA)
specification version 1.5.

At run time, the adapters implement both the Data Exchange Service Provider
Interface (DESPI) contracts to interact with the runtime container and the CCI
contracts to interact with the application component. The JCA architecture has been
extended with the data exchange component that allows efficient data exchange
between the adapter and the server runtime and supports multiple runtime
environments.

The layered approach provides a set of elements that can be assembled to provide
desired functionality and quality of service. The componentized approach allows
the separate, independent development of each element, as well as their reuse. The
following illustration presents the runtime architecture component model. The

Figure 2. Architecture overview

4 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

processing performed by each component (and subcomponent) in the model is
described in sections that follow the illustration.

The component model allows for a single architecture for adapter development
and evolution. It uses recognized standards but extends them as necessary, for
example with high performance, runtime-independent data exchange interface that
enables full adapter functionality in various environments. The layered component
model reduces complexity and allows extensibility. The use of the adapter
foundation classes (the standard library for building adapters) supports common
adapter capabilities and ensures adapter consistency.

JCA connector component

The JCA connector component provides the standard architecture for connecting
the J2EE platform to heterogeneous enterprise information systems (EIS),
facilitating bidirectional data exchange with the EIS. The JCA connector component
can be driven by the metadata that describes the interaction with the EIS. The JCA
connector component includes separate subcomponents for connecting to the EIS
and for exchanging data.

JCA connector connectivity subcomponent

The connectivity subcomponent of the JCA connector component includes
functionality for establishing, maintaining and closing connections to the target EIS
and provides support for transactions and security for these connections.

Application interface

SCA J2EE CC Proprietary. .

Application
Component

Data
Exchange

SDO DAAPI

Record Other

Metadata

JCA ConnectorCommon
Services

JCA Connector

Connectivity

Data exchange

Monitoring

Problem
Determination

Adapter
Foundation

Classes

Programming
Model

Common Client
Interface (CCI)

Connections
Security

Transactions
DESPI Records

Metadata

Figure 3. Runtime architecture component model

WebSphere Adapter development overview 5

The connectivity subcomponent interacts with the target enterprise information
system’s specific libraries and functionality. The subcomponent is exposed to the
application interface component through standard JCA CCI interfaces, which
include Connection, ConnectionFactory, Interaction and InteractionSpec for
outbound processing and ResourceAdapter and ActivationSpecWithXid for the
inbound event processing.

JCA connector Data exchange SPI (DESPI) subcomponent

The data exchange subcomponent of the JCA connector component includes
functionality for sending or receiving data from the application component through
the data exchange interface (DESPI). This interface is format and runtime neutral,
and permits any kind of structured or streamed data to be moved between the
connector and the application. The connector component understands the data
format of the EIS and is able to convert it to invocations of Data Exchange SPI. The
main advantage of DESPI is its high efficiency rate of passing data between
components without introducing any intermediate format.

Common services and adapter foundation classes

The adapter foundation classes provide base adapter implementation ensuring that
all the interfaces required by the contracts supported by the Connector component
are provided.

As shown in Figure 3 on page 5, the adapter foundation classes provide support
across all the elements of the connector component, including the JCA interfaces, as
well as data exchange interfaces implementing Data Exchange SPI (DESPI) and
various quality of service.

The adapter foundation classes support all the required JCA contracts for outbound
and inbound connectivity. For the outbound interactions, the support includes
standard create, retrieve, update, and delete (CRUD) operations through the
Command Manager, the application sign-on and transactions when supported by
EIS. For the inbound connectivity, support includes reliable event delivery to the
endpoint, support for polling as well as event listening pattern.

The adapter foundation classes provide full support for DESPI with full
implementation of required interfaces including abstract representation of the
metadata. An important component of the runtime environments, and thus
architecture, is monitoring and problem determination support. The adapter
foundation classes provide a set of utility classes for robust and consistent logging
and tracing in different deployment scenarios by hiding the underlying runtime
implementation.

The adapter foundation classes also support various monitoring and events and
allow all adapters take advantage of that functionality. The supported quality of
service includes Performance Monitoring Infrastructure (PMI), Application
Response Measurement (ARM) and Common Event Infrastructure (CEI). For more
information on the monitoring capabilities available, see “Monitoring and
measuring performance” on page 181.

Application interface component

The application interface component bridges the runtime environment and the
connector component. It enables invocation of the connector from the clients, using

6 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

the appropriate programming model. It is responsible for mapping the specific
invocation to the invocation of the connector component through the JCA common
client interface (CCI).

The component developer who has knowledge of the connector invocation
interfaces and the runtime programming model, delivers the application
component. The application component consists of data exchange, application
interface, and metadata elements.

Metadata

The metadata subcomponent describes the structure of the data exchanged with
the EIS through the data exchange interfaces. The metadata can also provide
information to the connector component about how the data can be exchanged
with the EIS. For more information on the metadata subcomponent, see “How
metadata is used at build time and run time.”

How metadata is used at build time and run time
Metadata is a set of characteristics that describe the structure of a WebSphere
business integration component, such as a business object, collaboration, or
adapter. Metadata describes facets common across an entire class of objects. For
example, attributes, properties, verbs, and application-specific information constitute
the metadata for a business object. Application-specific information is the part of
metadata of a business object that enables the adapter to interact with its
application or a data source.

At build time, you use the adapter to access data on an EIS, and from that data to
generate metadata in the form of annotated XML schemas. This build time
representation of the metadata contains the annotations with application-specific
information (ASI) that the adapter needs at run time in order to associate objects or
individual properties with their equivalent in the external resource.

The application-specific information portion of metadata identifies key fields,
mappings to external types, or for any other purpose that the adapter dictates. At
run time, an appropriate runtime representation of the metadata is passed to the
adapter. The adapter generates the data as XML annotations. All other components
apart from the adapter itself ignore the XML annotations. The runtime
representation must correspond to the XML schemas that were the result of the
import during enterprise metadata discovery, however their method of creations
may be specific to the given environment.

Note: The XML Schema generated as part of Enterprise Metadata Discovery can be
thought of as the canonical form.

You may prefer to construct the data object metadata programmatically from its
own metadata representation, which would have been created from the original
XML schemas, in other cases different representations, such as Records are used.
However, it is required that any application-specific information annotations in the
schemas be preserved by such environments and then provided along with the
type definition for consumption by the adapter.

Using Enterprise Metadata Discovery to build services
In addition to using enterprise metadata discovery to discover existing services,
you can use it to build services that include integrated processes that exchange
information with a technology like email or a file system.

WebSphere Adapter development overview 7

Version 1.1 of Enterprise Metadata Discovery includes enhancements for
configurable data handlers, function selectors, and data bindings, and a way to
build service descriptions using these configured artifacts and existing schemas. For
information on implementing interfaces for technology-style adapters, see
“Enterprise Metadata Discovery interfaces and implementation for technology
adapters” on page 157.

IBM WebSphere Adapter Toolkit overview
WebSphere Adapter Toolkit contains everything you need to create a resource
adapter. The adapters are metadata-driven components designed for bidirectional
communication with external services on Enterprise Information Systems (EIS),
such as transaction systems or ERP systems, as well as bidirectional
communication with technologies such as Email or Flat File.

Developing application components or processes that interact with the EIS through
an adapter requires tools that allow you to discover the services available on the
EIS. When the EIS does not include a metadata repository, the tool should allow
you to build the appropriate interactions with the EIS using adapters. The
enterprise metadata discovery (EMD) specification implemented by the WebSphere
Adapters enables you to discover services from an existing metadata repository or
build the appropriate interactions with an EIS. The specification defines the
interaction between adapters and tools and allows for plugging adapters into a
compatible tool implementation that supports the specification.

The enterprise metadata discovery-compliant tools are based on the Eclipse
platform and include IBM WebSphere Integration Developer and IBM Rational
Application Developer. The current tools support generation of SCA and J2EE
programming model artifacts, and is extensible to also support generation of
artifacts for other programming models and server runtimes. Enterprise metadata
discovery provides pluggability for artifact writers, which store the metadata and
configuration information in a manner compatible with the tools and runtime
requirements. The current enterprise metadata discovery implementation supports
SCA artifacts, but other artifacts can be generated by implementing a writer
plug-in. Such implementations may choose to write the configuration information
and metadata directly to their native repository, or to create classes or
configuration files to contain properties required for runtime.

In the service discovery mode, you use the adapter to connect to the EIS metadata
repository and browse its contents. You can select objects or services required by
the business application from the repository, specify properties for the objects and
import them (as business objects) into the development environment.

The enterprise metadata discovery process defines an abstract representation of the
imported services that allows the external service wizard to generate artifacts that
are specific to the programming model and the supported server runtime.

If you need to build a service (rather than discover a service), you can use the
external service wizard to create services from existing artifacts in the context of
the particular adapter to be used at run time. You can select the existing data types
to be exchanged and defined the transformation to be performed on these data
types.

The toolkit includes the following:
v An adapter development wizard and editor - Both are Eclipse plug-ins targeted

for use with WebSphere Integration Developer, v. 6.2:

8 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

– The New Connector Project Wizard - Prompts you to specify information
about the resource adapter you wish to develop, and then generates code and
a deployment descriptor.
The code generated by the wizard can include sequence of calls, log and trace
messages and comments.

– Resource Adapter Deployment Descriptor Editor - An Eclipse multi-page
form editor that allows you to display and configure your deployment
descriptor. As changes are made to configuration properties using the editor,
the appropriate Java bean properties are added to your code.

v Adapter Foundation Classes - A common set of services for all IBM WebSphere
resource adapters.

v Samples - To assist you in creating custom WebSphere resource adapters.

New Connector Project wizard overview
The wizard installed with the WebSphere Adapter Toolkit guides you through
creation of a Connector Project, including the generation of code and a deployment
descriptor for a custom JCA resource adapter.

The New Connector Project Wizard is an Eclipse plug-in intended for use with
WebSphere Integration Developer. The wizard allows you to create code in a Java
Connector Project for a custom resource adapter. Working with the wizard, you can
do the following:
v Generate implementations of the JCA 1.5 interface specification or extensions

to the Adapter Foundation Classes API

The wizard prompts you for information that is then used to create the
appropriate code for your adapter.

Figure 4. New Connector Project wizard

WebSphere Adapter development overview 9

v Generate a resource adapter deployment descriptor

You can view and edit this deployment descriptor using the Resource Adapter
Deployment Descriptor Editor.

Resource Adapter Deployment Descriptor Editor overview
This multi-page editor allows you to display, configure, and validate the resource
adapter deployment descriptor generated by the wizard.

The Resource Adapter Deployment Descriptor is an Eclipse plug-in intended for
use with WebSphere Integration Developer. The editor allows you to do the
following:
v Display and configure the resource adapter deployment descriptor without

having to modify the XML file directly
v Automatically generate Java bean properties in the generated source code that

correspond to the configuration properties you add using the editor
v Validate the deployment descriptor against the against the JCA 1.5 deployment

descriptor schema.

Adapter Foundation Classes overview
The Adapter Foundation Classes installed with theWebSphere Adapter Toolkit
provide the foundation services for a custom JCA resource adapter that can run on
multiple server runtimes, including WebSphere Process Server.

The New Connector Project wizard uses the Adapter Foundation Classes to
generate an implementation of classes for your custom adapter. The Adapter
Foundation Classes conform to, and extend, the Java 2 Connector Architecture JCA
1.5 specification. The foundation classes include generic contracts and methods to
develop a working resource adapter. The New Connector Project wizard collects
information from you to create enterprise information system-specific extensions to
the foundation classes.

This document contains implementation guidelines for the Adapter Foundation
Classes. The Javadoc for the Adapter Foundation Classes, as well as the Javadoc
for the Data exchange service provider interface (DESPI) and the Javadoc for
Enterprise Metadata Discovery, are included as part of the WebSphere Adapter
Toolkit installation. For more information, see “IBM WebSphere Adapter Toolkit
tasks” on page 11.

Figure 5. Resource Adapter Deployment Descriptor

10 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

IBM WebSphere Adapter Toolkit tasks
The tasks range from installing the toolkit, samples, and Adapter Foundation
Classes (using the Eclipse Update Manager in WebSphere Integration Developer) to
implementing and validating your code.

Table 1. WebSphere Adapter Toolkit tasks

Task Task description

Validate WebSphere Adapter Toolkit installation
requirements

See the developerWorks site for WebSphere Adapter Toolkit for
hardware and software prerequisites for the toolkit and for
specific information on how to integrate the toolkit into the
version of WebSphere Integration Developer or Rational®

Application Developer for WebSphere Software that is installed
on your system.
Note: Make sure you select the tab for version 6.2 of the
WebSphere Adapter Toolkit.

Installing WebSphere Adapter Toolkit You do not run an installer program for the toolkit. Instead, you
bring the toolkit, the samples, and the adapter foundation classes
(including the Javadoc for the Adapter Foundation Classes and
the Javadoc for DESPI and EMD) into WebSphere Integration
Developer by launching the Eclipse Update Manager.

Access the Javadoc for the Adapter Foundation
Classes, EMD 1.1 and DESPI.

To access the Javadoc, perform the following steps:

1. From the Rational Application Developer for WebSphere
Software or WebSphere Integration Developer menu, select
Help → Help Contents

2. Choose Websphere Adapter Toolkit documentation and then
select the Javadoc you want to view.

Note: To view the Javadoc for JCA 1.5, go to the download
section of the J2EE Connector Architecture site.

Using the New J2C Resource Adapter Project
wizard

How to launch it, specify properties, choose generation options,
and generate classes.

Using the Resource Adapter Deployment
Descriptor editor

How to launch it, display features, change and add properties,
and edit source.

Implementing code stubs A topic-by-topic guide to implementing the generated code.

Validating code How to validate your code.

Exporting the resource adapter How to export a standalone (RAR file) or embedded (EAR file)
resource adapter.

IBM WebSphere Adapter Toolkit installation requirements
The WebSphere Adapter Toolkit installation has operating system requirements and
hardware requirements.

Among the requirements are a Windows or Linux operating system and successful
installation of WebSphere Integration Developer.

Operating system requirements

Make sure that you meet the operating system requirements shown in the table.

Operating system Versions

Linux Red Hat Enterprise Linux AS/ES/WS 3 Update 4, Version 3.0
SUSE LINUX Enterprise Server (SLES and SLSS), Version 9.0

WebSphere Adapter development overview 11

http://www.ibm.com/developerworks/websphere/downloads/wat/index.html?S_TACT=105AGX28&S_CMP=DLMAIN
http://java.sun.com/j2ee/connector/download.html

Operating system Versions

Windows 2000 Windows 2000 Professional (SP4)
Windows 2000 Server (SP4)
Windows 2000 Advanced Server (SP 4)

Windows XP Windows XP SP 2

Windows 2003 Windows Server 2003 Standard
Windows Server 2003 Enterprise

Hardware requirements

The table shows the hardware requirements for supported operating systems.

Operating system Hardware requirements

Linux®

Windows® 2000
Windows 2003
Windows XP

v Intel® Pentium® III 800 MHZ processor or faster

v 1024 x 768 display or higher resolution monitor

v Memory: requirements

– 768 MB minimum

– 1 GB recommended

v Disk space requirements:

– 3.5 GB minimum to installing software prerequisites

– Additional disk space for your development
resources.

You can reduce the minimum disk space if optional
features and runtimes are not installed.

Software requirements

The components that comprise the WebSphere Adapter toolkit are Eclipse plug-ins.
You must install WebSphere Integration Developer software before attempting to
install IBM WebSphere Adapter Toolkit software plug-ins.

Samples overview
When you installed the IBM WebSphere Adapter Toolkit, two sample resource
adapters were placed on your system. The samples installed with WebSphere
Adapter Toolkit are a reference for the creation of custom JCA resource adapters.

There are two samples as follows:
v The TwineBall sample is an implementation of a custom WebSphere Adapter

based on the Adapter Foundation Classes. This sample is located in the
adapter/twineball directory of the install location you selected.
The sample adapter connects to a sample enterprise information system (EIS),
which is also called TwineBall. This EIS is included in the RAR package,
twineball.jar. The TwineBall EIS uses the Derby database to store table data in a
file on the file system TWINE.

v The KiteString sample is similar to TwineBall, but is based directly on the JCA
1.5 resource adapter interface specification. The KiteString sample is located in
the adapter/kitestring directory of the install location you selected.

12 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

This documentation describes how to run the Twine Ball sample only. However,
you can apply the instructions for running and testing the Twine Ball sample to
the Kite String sample.

The sample instructions accommodate creating an adapter for the Twine Ball
sample using WebSphere Integration Developer, for deployment to a WebSphere
Process Server runtime environment, as well as instructions for creating the
adapter for the Twine Ball sample using Rational Application Developer, for
deployment to WebSphere Application Server runtime environment.

In order to test the functionality of the adapter used in the sample, the adapter
must include both outbound and inbound processing capabilities. In the
instructions for the sample, you will first select an outbound processing direction
for the adapter. The outbound processing performed by the adapter in the Twine
Ball sample creates a customer. As a result of creating a customer, an event is
created in a database table. When you test the adapter in the sample, the adapter
uses its inbound processing capabilities to retrieve that event.

Both Twineball and KiteString include the following:
v Implementation of a resource adapter and enterprise metadata discovery
v Resource adapter deployment descriptor and source code in Project Interchange

Format suitable for importing into WebSphere Integration Developer
v RAR file suitable for deployment to WebSphere Process Server.

Running the Twine Ball sample using WebSphere Integration
Developer

Use WebSphere Integration Developer to access and run the Twine Ball sample.

Import the samples code
Before you can run the sample, you must first import it into your workspace.

Make sure you have installed WebSphere Adapter Toolkit.

For information on known issues with regard to running the sample code, see
Known issues in Troubleshooting the samples.

Importing the sample code involves bringing sample code and artifacts into your
environment so that you can run a sample application.

The following instructions describe how to use WebSphere Integration Developer
to import a deployable RAR file for use in the Twine Ball sample.

Optionally, you can import the Twine Ball sample by importing the source code.
1. Import the deployable RAR file for the Twine Ball sample from the WebSphere

Integration Developer samples.
a. Launch WebSphere Integration Developer

Click Start → Programs → IBM WebSphere → Integration Developer 6.2.
b. From the menu, select Help → Samples

WebSphere Adapter development overview 13

This launches the Samples.
c. From the Samples navigation pane, select Technology samples and expand

Java and WebSphere Adapters so that the Twine Ball and Kite String
samples display.

d. Click Twine Ball to display a description of the Twine Ball sample in the
viewing pane of the Technology Samples.

2. From the viewing pane of the Technology samples window, select Import the
sample deployable rar. This launches the Connector Import window.

Note: You can also import the sample deployable RAR from the setup
instructions window.

3. Enter values on the Connector Import window:
a. Accept the default values for the Connector file and the Connector module

fields.
b. Select WebSphere Process Server v6.2 for the Target runtime field.

14 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

c. Optional: Deselect the Add project to an EAR check box.

4. Click Finish.
A dialog prompts you to open the J2EE perspective. Click Yes to finish the
process of importing the deployable RAR file for the Twine Ball sample into
your workspace.

Now you can perform external service discovery for the Twine Ball sample.

Run external service discovery for outbound processing
The external service wizard is a tool you use to create services. The external service
wizard establishes a connection to the EIS, discovers services (based on search
criteria you provide), and generates business objects, interfaces, and import or
export files, based on the services discovered.

Import the deployable RAR file for the sample.

For the Twine Ball sample you need to create an adapter service for outbound
processing and inbound processing. This task describes the how to use the External
Service wizard to create and adapter service for outbound processing.
1. If not already there, go to the Business Integration perspective.
2. Place your cursor in the Business Integration navigation pane, right-click and

select New → Other to launch the Select a wizard window.
3. From the list of available wizards, expand Business Integration and select the

External Service wizard:

WebSphere Adapter development overview 15

4. Click Next to launch the New External Service window.
5. From the New External Service window, make sure that Unlisted Adapter is

selected and click Next.

6. From the Select an Adapter window, expand TwineBallConnector (IBM:6.2),
select CWYAT_TwineBall and click Next.

16 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

7. From the Processing Direction window, select Outbound and click Next.

8. From the Discovery Configuration window, click Next. No connection
properties are required.

9. From the Object Discovery and Selection window, select CUSTOMER from the
Discovered objects pane and add it to the Selected objects portion of the
window then click Next.

WebSphere Adapter development overview 17

10. From the Configure Composite Properties window, select Next.

11. From the Service Generation and Deployment Configuration window, deselect
Specify a Java Authentication and Authorization Services (JASS) alias
security credential and click Next.

18 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

12. From the Service Location Properties window, click New. This launches the
New Integration Project window.

13. From the New Integration Project window, select Create a module project and
click Next.

14. Enter values in the New Module window and click Finish.

Your module displays in the Project explorer view:

WebSphere Adapter development overview 19

15. Click Finish from the Service Location Properties window to add the
outbound interface to the module.

16. You are prompted on whether you want to update the model, select Yes.

Run the external service discovery process again to add the inbound interface to
the module.

Run external service discovery for inbound processing
The external service wizard is a tool you use to create services. The external service
wizard establishes a connection to the EIS, discovers services (based on search
criteria you provide), and generates business objects, interfaces, and import or
export files, based on the services discovered.

Make sure you have done the following:
v Import the deployable RAR file for the sample into your workspace.
v Run external service discovery for outbound processing.

For the Twine Ball sample you need to create an adapter service for outbound
processing and inbound processing. This task describes the how to use the External
Service wizard to create an adapter service for inbound processing.
1. Go to the Business Integration perspective.
2. Place your cursor in the Business Integration navigation pane, right-click and

select New → Other to launch the Select a wizard window.
3. From the list of available wizards, expand Business Integration and select the

External Service wizard:

20 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

4. Click Next to launch the New External Service window.
5. From the New External Service window, make sure that Unlisted Adapter is

selected and click Next.

6. From the Select an Adapter window, expand TwineBallConnector (IBM:6.2),
select CWYAT_TwineBall and click Next.

WebSphere Adapter development overview 21

7. From the Processing Direction window, select Inbound and click Next.

8. From the Discovery Configuration window, click Next. No connection
properties are required.

9. From the Object Discovery and Selection window, select CUSTOMER and add
it to the Selected objects portion of the window then click Next.

22 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

10. From the Configure Composite Properties window select Next.

11. From the Service Generation and Deployment Configuration window, deselect
Specify a Java Authentication and Authorization Services (JASS) alias
security credential.

WebSphere Adapter development overview 23

12. From the Service Location Properties window, click Finish to add the inbound
interface to the module.

13. You are prompted on whether you want to update the model, select Yes.
You should see the inbound and outbound interfaces in the viewing area of
the assembly diagram editor:

Modify the module.

Modify the module
Modify the sample module by adding a Java component to link to the inbound
service.

You must have created the service before modifying it.

By adding a Java component to link the service you will be able to access and
implement the emit <Create/Delete/Update>Customer() method to insert a print
statement.
1. Add a Java component to link to the InboundService.

24 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

a. In the viewing pane of the Assembly diagram, right click and select Add →
Java to add a Java component to the diagram

2. Add a wire from the inbound interface to the new Java component. A window
displays to inform you that your actions will allow the service to be used in
other modules. Click OK.

3. Right click on the Java component and select Generate → Implementation. and
click OK on the Generate Implementation window.

4. Add a system.out.println to the emitCreateAfterImageCustomer
emitCreateAfterImageCustomer()/emitCustomer() method

public void emitCreateAfterImageCustomer(
DataObject emitCreateAfterImageCustomerInput) {
System.out.println("Got the event!");
//TODO Needs to be implemented.
}

5. Save the module.

Now you are ready to test the module.

Test the sample
Use the administrative console and test client to test your sample.

Before you test the sample module make sure you have completed all of the
previous tasks for creating and modifying the sample module.
1. Start WebSphere Process Server
2. Add the module project to the server
3. Verify the adapter is running (and polling if you selected the inbound service).

Check the console, log and trace file for more information.

WebSphere Adapter development overview 25

4. Run the administrative console and verify the module is installed and running.
5. Test the module by performing the following steps:

a. Change to the Business Integration perspective
b. Right click on the module and select Test → Test Module

c. Populate the customer object fields with data.
d. Click the continue button.
e. Look for this message in the console:

Got the Event!

This is the message that you implemented in the
emitCreateAfterImageCustomer() method.

Running the Twine Ball sample using Rational Application
Developer

Use Rational Application Developer access and run the Twine Ball sample.

Import the samples code into Rational Application Developer and
modify the sample for use
Before you can run the sample, you must first import it into your workspace and
modify various values.

Make sure you have installed WebSphere Adapter Toolkit.

For information on known issues with regard to running the sample code, see
Known issues in Troubleshooting the samples.

Importing the sample code involves bringing sample code and artifacts into your
environment so that you can run a sample application.

The following instructions describe how to use Rational Application Developer to
import a deployable RAR file for use in the Twine Ball sample.

Optionally, you can import the Twine Ball sample by importing the source code.
1. Import the deployable RAR file for the Twine Ball sample from the Rational

Developer samples.
a. Launch Rational Application Developer

Click Start → Programs → IBM Rational → Application Developer 7.5.1.
b. From the menu, select Help → Samples

This launches the Samples.
c. From the Samples navigation pane, select Technology samples and expand

Java and WebSphere Adapters so that the Twine Ball and Kite String
samples display.

d. Click Twine Ball to display a description of the Twine Ball sample in the
viewing pane of the Technology Samples.

2. From the viewing pane of the Technology samples window, select Import the
sample deployable RAR.

3. Right click on CWYAT_TwineBall and select New → Other → J2C → J2C Java
Bean

4. Click CWYAT_TwineBall → Next → Next

5. In the Object Discovery and Selection window use the arrow-right to add the
CUSTOMER object to the Objects to be imported area of the window and click
Next.

26 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

6. In Java Creation and Deployment Configuration, make the following
selections:
v Select create new project Name and enter a name for the project, for

example, Demo.
v Enter a name in the Create New Package Name field, for example pckg

v Provide an interface name in the Interface Name field, for example Sample

v Choose Non-managed Connection and click Finish.
7. Right click on Demo → New → Other → J2C and select one of the following:

v Web Page

v Web Service

v EJB from J2C Java Bean

Select Next.
8. Choose Java Project and enter a name for the project.
9. In J2C Java bean selection, choose the correct J2C bean implementation and

click Next. For example, using the values documented in this sample, you
would choose:\Demo\src\pckg\SampleImpl.java

10. Select EJB and click Next

11. Create the EJB project name and the EJB package.
12. For example, DemoEJB for the project name and ejbpkg for the EJB package

name.
13. Right click DemoEJB → Properties and add the following to the Java Build

path:
v twine.jar
v aspectjrt.jar
v ffdc.jar
v ffdcsupport.jar

14. Right click DemoEJB → Java EE → Prepare for deployment

15. Right click on Server and add project If you used values from this example,
you would add the project DEMOEJBEAR.

Use the universal test client to test the adapter in the Twine Ball sample.

Test the sample using the universal test client
Use the universal test client to verify that the adapter in the Twine Ball sample
functions as intended.

Before you test the sample module make sure you have completed all of the
previous tasks for creating and modifying the sample module.

The test validates that the adapter performs it’s intended functions within the
context of the Twine Ball sample.
1. Run universal test client.
2. Click on JNDI Explorer
3. Click on ejb and click on your package, for example ejbpkg and select correct

SessionBeanHome

4. On the left side of Universal test client, choose correct SessionBeanHome and
Invoke create method. If you used the values from the sample documentation,
you would select EJBSessionBeanHome.

5. Click the work with object radio button.

WebSphere Adapter development overview 27

6. On left side select EJBSessionBean1 and click Customer
createCustomer(Customer) Enter input customer parameters

Troubleshooting the samples
You may need to troubleshoot issues that arise when creating or running the
samples.

Errors

The following errors may result when working with the sample code:
v A com.ibm.adapter.framework.BaseException error

This error can result when using the sample source code to run external service
discovery or because the Twine Ball database is locked by a prior run of the
external service discovery process. The error message displays as follows:

To fix this error perform the following steps:
1. Go to the WebSphere Integration Developer installation directory and delete

the twine folder.
2. Restart WebSphere Integration Developer and try to run the external service

discovery process again.

.

Known issues

The following issues regarding working with the Kite String and Twine Ball
samples are known issues to development:
v If you create the module using the sample code instead of the deployable RAR

file, you cannot publish to the module successfully to WebSphere Process Server.
When you run the samples you should do so using the deployable sample RAR
file instead of the source code.

v The Kite String sample works in WebSphere Application Server with custom
clients, but it does not work with the Rational Application Developer J2C
tooling.

Using the New Connector Project wizard
You use the wizard create a Connector Project which contains a deployment
descriptor and classes. The classes either extend the WebSphere Adapter
Foundation Classes or implement the JCA 1.5 Interface specification.

28 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Launching the New Connector Project wizard
You launch the wizard from IBM WebSphere Integration Developer.

Make sure you have met all of the installation requirements and that you have
successfully installed WebSphere Integration Developer and the WebSphere
Adapter Toolkit plug-ins.

Launch the New Connector Project wizard when you are ready to create a new
adapter project.
1. Start IBM WebSphere Integration Developer.

Choose Start → IBM WebSphere → WebSphere Integration Developer V6.x →
WebSphere Integration Developer V6.x. This displays the Workspace Launcher
dialog.

Workspace Launcher dialog

2. Enter a workspace directory for your project, or click Browse to select a
location for your project in the Workspace field.
The workspace is a directory where WebSphere Integration Developer stores
your project.
Optional: Select the Use this location as the default check box to always use
this workspace for new projects. You can change workspaces by choosing File →
Switch Workspace.

3. Make sure you are in either the Business Integration or Java EE perspective.
4. Select the wizard.

Choose File → New → Other. This displays the Select a wizard dialog.

WebSphere Adapter development overview 29

Select a wizard dialog

5. Start the wizard.
Expand theJava EE folder, choose Connector Project, and click Next. This starts
the New Connector Project wizard and displays the Connector Project dialog.

Connector Project dialog

You are ready to describe your project and resource adapter properties.

30 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Specify project properties
You name your connector project, optionally adding it to an Enterprise Application
project. You also specify the configuration used for developing the resource
adapter.

You perform all of these tasks from the Connector Project dialog.

Connector Project dialog

1. Name your Connector Project.
Enter a project name in the Project name field. The name is automatically
appended to the workspace location.

2. Set Target Runtime to <None> and select IBM Websphere Adapter for the
Configurations

The IBM Websphere Adapter configuration contains the IBM WebSphere Adapter
Foundation Classes 6.2, J2C Module 1.5 and Java 5.0 Project Facets. You can
modify these facets by clicking the Modify button.

3. Optional: Specify an Enterprise Application Archive (EAR) project name.
a. In the EAR Membership section, click the Add project to an EAR check

box. Enter or select a name in the EAR project Name field or click New
and then name the new EAR project.

Note: You can generate an EAR file later, after building and testing the
adapter.

4. Click Next. This displays the Project facets dialog.

You are ready to specify project facet properties.

WebSphere Adapter development overview 31

Specify project facets
As part of the process of creating a project, you specify project facets. A project facet
represents a unit of functionality in the project. Project facets define characteristics
and requirements for projects. When you add a facet to a project, that project is
configured to perform a certain task, fulfill certain requirements, or have certain
characteristics.
1. From the New Connector Project screen, make sure IBM WebSphere Adapter

displays in the Configurations field and do not change the configuration or
deselect any of the project facets. The project facets that are preselected are the
facets you need to run the WebSphere Adapter Toolkit.

2. Select Next to go to the Connector Project module settings panel.

Now you can configure the Connector Project Module settings.

Specify connector project module settings
Specify connector project module settings for your adapter.
1. From the Configure Connector Module setting page, accept the name assigned

to the connector project.

32 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

2. Click Next to advance to the Resource adapter properties page.

Now you are ready to set the properties for the resource adapter.

Specify resource adapter properties
Resource adapter properties are the descriptive properties that you assign to both
the adapter and the adapter class.

You name the adapter and qualify its Java class with a package name and class
prefix.

You perform these tasks in the J2C Resource Adapter Properties window.

WebSphere Adapter development overview 33

1. In Adapter Name, type the name of the adapter.
2. In Adapter ShortName, type a one- to four-character short name for the

adapter. The short name is used to create the component name that is used in
the log and trace files as follows:
ShortName + the characters “RA” + the value of the adapter ID property, which
the user specifies when configuring the adapter
For example, if you specify the short name BO and the user specifies the
adapter ID of 001, then the component name used in log and trace files is
BORA001.

3. In Package Name, type the package name.
4. In Class Name Prefix, type the prefix to be used in adapter class names. Class

Name displays the resulting fully qualified ResourceAdapter class name.
5. Click Next. This displays the Generation Options window.

You can now specify generation options for your resource adapter.

Specify generation options
Generation options are the types of components for which you can generate
classes.

You specify adapter components in the Generation Options dialog.

You must choose which kind of adapter specification you want to implement: an
IBM WebSphere Resource Adapter, or a J2C Resource Adapter. The adapter
specification that you choose determines the generation options available.

Figure 6. J2C Resource Adapter Properties window

34 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

For information on the characteristics of an IBM WebSphere Resource Adapter and
a J2C Resource Adapter, see Introduction to JCA.

Generation Options dialog

From the Adapter Specification drop-down, choose the type of adapter you want
to create:
v Choose IBM WebSphere Resource Adapter in the Adapter Specification list to

generate code that extends the Adapter Foundation Classes.
v Choose J2EE J2CA Resource Adapter in the Adapter Specification list to

generate code that implements the JCA 1.5 interface specification.

The wizard displays the generation options that correspond to your adapter.

What to do next

You are ready to specify generation options that match your adapter requirements.

Generating an IBM WebSphere Resource Adapter
You use the wizard to generate adapter classes that correspond to the adapter
capabilities you require. This involves choosing the types of adapter classes
(outbound, inbound, data binding, or enterprise metadata discovery) you want to
generate and then choosing the component properties associated with the adapter
classes.

The following sections describe the adapter classes and their associated component
properties.

Outbound adapter classes and associated properties

Generating outbound adapter classes creates code (and in some cases sequence of
calls, log and trace messages and comments) for the methods that must be
implemented to produce a resource adapter that can send business events to an
EIS. The list of Adapter Foundation Classes that are extended in your Connector
Project when you choose to generate outbound adapter classes is as follows:
v Connection extends com.ibm.j2ca.base.WBIConnection
v ConnectionFactory extends com.ibm.j2ca.base.WBIConnectionFactory
v ConnectionRequestInfo extends com.ibm.j2ca.base.WBIConnectionRequestInfo
v Interaction extends com.ibm.j2ca.base.WBIInteraction
v InteractionSpec extends com.ibm.j2ca.base.WBIInteractionSpec
v ManagedConnection extends com.ibm.j2ca.base.WBIManagedConnection
v ManagedConnectionFactory extends

com.ibm.j2ca.base.WBIManagedConnectionFactory

In addition the following are generated directly from the JCA 1.5 interface
specification:
v ConnectionSpec implements javax.resource.cci.ConnectionSpec
v ConnectionMetaDataImpl implements javax.resource.cci.ConnectionMetaData
v LocalTransaction implements javax.resource.spi.LocalTransaction

WebSphere Adapter development overview 35

You can select the following properties when generating outbound adapter classes:
v Local transaction support

Generating outbound adapter classes with local transaction support means that
the transaction is managed and performed by the EIS. LocalTransaction indicates
the IBM WebSphere adapter supports local transactions. Local transaction
support methods provide a LocalTransaction implementation and return the
wrapper.
Using the WBILocalTransaction covers the following requirements:
– Notifies the JCA container
– Updates the state of transactions on the WBIManagedConnection
When you choose the Local Transaction Support component property from the
list of outbound adapter component properties, the wizard will create the
following method in the ManagedConnection class:
/**
* Does the EIS support local transaction? Provide a LocalTransaction
* implementation and return the wrapper.

*
* @return new instance of WBILocalResourceWrapper
* @see javax.resource.spi.ManagedConnection#getLocalTransaction()
*/
public LocalTransaction getLocalTransaction() throws ResourceException {

FooLocalTransaction transaction = new FooLocalTransaction(this);
return new WBILocalTransactionWrapper(transaction, this);

}

For information on how to generate an outbound adapter with local transaction
support, see Generating outbound local transaction support methods.

v XA transaction support

Generating outbound adapter classes with XA transaction support means the
transaction spans multiple heterogeneous systems. It uses global or
two-phase-commit protocol. If a transaction manager coordinates a transaction,
that transaction is considered a global transaction.
Using the WBILocalTransaction covers the following requirements:
– Notifies the JCA container
– Updates the state of transactions on the WBIManagedConnection
The getXAResource() method should get the XAResource from your EIS and
return the wrapper. The WBIXAResourceWrapper acts as a thin layer delegating
all calls to the underlying EIS XAResource instance, while at the same time
tracking the sequence of calls to monitor and determine when the connection is
involved in a transaction and when it is not.
The wizard will create the getXAResource() and getLocaltransaction() method
as follows:
Local method
/**
* Does the EIS support local transaction?
*
* @return new instance of WBIXAResourceWrapper
* @see javax.resource.spi.ManagedConnection#getLocalTransaction()
*/
public LocalTransaction getLocalTransaction() throws ResourceException {
FooLocalTransaction transaction = new FooLocalTransaction(this);
return new WBILocalTransactionWrapper(transaction, this);
}

XA method

36 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

/**
* Does the EIS support XA transaction?
* Get the XAResource from your EIS and return the wrapper.
*

* @return new instance of WBIXAResourceWrapper
* @see javax.resource.spi.ManagedConnection#getXAResource()
*/

public XAResource getXAResource() throws ResourceException {
return new WBIXAResourceWrapper(null, this);

}

Further implementation of these methods are needed to support XA transactions.
For information on how to generate XA Transaction support methods, see
Generating XA Transaction support methods.

v Command pattern

Generating command pattern classes allows you to break down a hierarchical
update into a series of nodes and then generate a collection of sub-commands to
manage the nodes. An interpreter processes the sub-commands, retrieving and
executing the corresponding code. If you choose this option, the wizard
generates code for the following classes:
– BaseCommand extends

com.ibm.j2ca.extension.commandpattern.CommandForCursor
– CommandFactory implements

com.ibm.j2ca.extension.commandpattern.CommandFactoryForCursor
– CreateCommand extends <your package

name>.outbound.commandpattern.<your class prefix>BaseCommand
– DeleteCommand extends <your package

name>.outbound.commandpattern.<your class prefix>BaseCommand
– NoOperationCommand extends <your package

name>.outbound.commandpattern.<your class prefix>BaseCommand
– RetrieveCommand extends <your package

name>.outbound.commandpattern.<your class prefix>BaseCommand
– RetrieveAllCommand extends <your package

name>.outbound.commandpattern.<your class prefix>BaseCommand
– UpdateCommand extends <your package

name>.outbound.commandpattern.<your class prefix>BaseCommand
For information on how to generate command pattern classes, see Generating
command pattern classes.

Inbound adapter classes and associated methods

Generating inbound adapter classes creates code for the methods that must be
implemented to produce a resource adapter that can send events from an EIS to a
business process. The list of Adapter Foundation Classes that are extended in your
Connector Project when you choose to generate inbound adapter classes is as
follows:
v ActivationSpecWithXid extends com.ibm.j2ca.base.WBIActivationSpecWithXid
v EventStoreWithXid extends

com.ibm.j2ca.extension.eventmanagement.EventStoreWithXid

You can select the following properties when generating outbound adapter classes:
v Connection pooling

WebSphere Adapter development overview 37

When you choose the connection pooling component property the wizard will
create the ActivationSpecWithXid class that extends
WBIActivationSpecForPooling.
For information on how to generate inbound connection pooling support, see
Generating inbound connection pooling support.

v Event polling support

Generating inbound adapter classes for event polling support creates code for
the methods that must be implemented to produce a resource adapter that can
send polling events from an EIS to a business process.
The list of Adapter Foundation Classes that are extended in your Connector
Project when you choose to generate inbound adapter classes for event polling
support is as follows:
– ActivationSpecWithXid extends com.ibm.j2ca.base.WBIActivationSpecWithXid
– EventStoreWithXid extends

com.ibm.j2ca.extension.eventmanagement.EventStoreWithXid
When the CommException exception is logged during adapter startup because
the EIS is down, stopped, or unreachable, the adapter automatically retries the
connection if the RetryConnectionOnStartup activation specification property is
enabled. If the property is not enabled, the adapter immediately reports the
failure. This support is provided by the Adapter Foundation Classes. An adapter
user enables this property in the external service wizard by selecting Retry EIS
connection on startup on the Service Generation and Deployment Configuration
window. The RetryConnectionOnStartup property works with the RetryLimit
and RetryInterval properties, which specify the number of times the adapter
retries the connection and the length of time it waits before retrying.
For information on how to generate event polling support, see Generating
inbound event polling support.

v Generating inbound callback event support

Generating inbound adapter classes for callback event support creates code for
the methods that must be implemented to produce a resource adapter that can
send callback events from an EIS to a business process.
The list of Adapter Foundation Classes that are extended in your Connector
Project when you choose to generate inbound adapter classes for callback event
support is as follows:
– ActivationSpecWithXid extends com.ibm.j2ca.base.WBIActivationSpecWithXid
– InboundListener that imports in

com.ibm.j2ca.extension.eventmanagment.external.CallbackEventSender
For information on how to generate inbound callback event support, see
Generating inbound callback event support.

Data Binding classes

There are no properties associated with data binding classes.

Generating data binding classes creates code for the methods needed to marshall
data from SDO to CCI record and from CCI record to SDO.

The list of Adapter Foundation Classes that are extended in your Connector Project
when you choose to generate data binding classes is as follows:
v DataBinding implements

commonj.connector.runtime.RecordHolderDataBinding

v DataBindingGenerator extends

38 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

com.ibm.j2ca.extension.databinding.WBIDataBindingGenerator

For information on how to generate data binding classes, see Generating Data
Binding Classes.

Enterprise Metadata Discovery classes

There are no properties associated with Enterprise Metadata Discovery classes.

Generating enterprise metadata discovery classes creates code for the methods
needed to produce a service that you can use to glean business object structure and
other data from an EIS.

The list of Adapter Foundation Classes that are extended in your Connector Project
when you choose to generate enterprise metadata discovery classes is as follows:
v AdapterType extends

com.ibm.j2ca.extension.emd.discovery.WBIAdapterTypeImpl

v DataDescription extends
com.ibm.j2ca.extension.emd.description.WBIDataDescriptionImpl

v InboundConnectionConfiguration extends
com.ibm.j2ca.extension.emd.discovery.connection.WBIInboundConnectionConfigurationImpl

v InboundConnectionType extends
com.ibm.j2ca.extension.emd.discovery.connection.WBIInboundConnectionTypeImpl

v InboundServiceDescription extends
com.ibm.j2ca.extension.emd.description.WBIInboundServiceDescriptionImpl

v MetadataDiscovery extends
com.ibm.j2ca.extension.emd.discovery.WBIMetadataDiscoveryImpl

v MetadataEdit extends
com.ibm.j2ca.extension.emd.discovery.WBIMetadataEditImpl

v MetadataImportConfiguration extends
com.ibm.j2ca.extension.emd.discovery.WBIMetadataImportConfigurationImpl

v MetadataObject extends
com.ibm.j2ca.extension.emd.discovery.WBIMetadataObjectImpl

v MetadataSelection extends
com.ibm.j2ca.extension.emd.discovery.WBIMetadataSelectionImpl

v MetadataTree extends
com.ibm.j2ca.extension.emd.discovery.WBIMetadataTreeImpl

v OutboundConnectionConfiguration extends
com.ibm.j2ca.extension.emd.discovery.connection.WBIOutboundConnectionConfiguration

v OutboundConnectionType extends
com.ibm.j2ca.extension.emd.discovery.connection.WBIOutboundConnectionTypeImpl

v OutboundServiceDescription extends
com.ibm.j2ca.extension.emd.description.WBIOutboundServiceDescriptionImpl

In addition to the Adapter Foundation Classes listed above, the following classes
are also generated to assist you:
v Constants

Contains enterprise metadata discovery constant variables.

WebSphere Adapter development overview 39

v StringCaseChanger

This is a utility that you can use format the business object or attribute name
properly.

For information on how to generate Enterprise Metadata Discovery classes, see
Generating Enterprise Metadata Discovery classes .

Generating outbound adapter classes
Generate outbound adapter classes for adapters that will send requests from a
client application to the EIS.

Review the section on outbound adapter classes and associated properties in
Generating an IBM WebSphere Resource Adapter.

When you choose to generate outbound adapter classes, the wizard creates code
(and in some cases sequence of calls, log and trace messages and comments) for
the methods that must be implemented to produce a resource adapter that can
send business events to an EIS.
1. From the Available components portion of the Generation Options window,

click the Generate Outbound Adapter Classes check box .

2. Review the available component property options associated with outbound
adapter classes.
Each of the component property options are described in the sections that
follow.

Generate the outbound adapter classes for the component property selected.

40 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

covw_gen_adapter.dita

Generating outbound local transaction support methods:

With local transaction support, the transaction is managed and performed by the
EIS. LocalTransaction indicates the IBM WebSphere adapter supports local
transactions. Local transaction support methods provide a LocalTransaction
implementation and return the wrapper.

Consider your strategy for implementing transaction behavior in the adapter
before generating outbound classes. You will not be allowed to regenerate code to
add XA transactional behavior to the adapter if you click Finish to generate the
code for this task.

Review the section on local transaction support in Generating an IBM WebSphere
Resource Adapter.

For more information on transaction support, see Implementing transaction
support.
1. Click the Generate outbound adapter classes check box and then click on the

Local Transaction Support check box in the right pane.

Note: Before clicking Finish be aware that when you generate transactional
support for the outbound classes you will not be able to modify the transaction
support automatically after generating the classes.

2. Click Finish.

Now, you can generate outbound XA transaction support methods.

WebSphere Adapter development overview 41

covw_gen_adapter.dita
covw_gen_adapter.dita

Generating outbound XA transaction support methods:

With XA transaction support, the transaction spans multiple heterogeneous
systems. It uses global or two-phase-commit protocol. If a transaction manager
coordinates a transaction, that transaction is considered a global transaction.

Review the section on XA transaction support in Generating an IBM WebSphere
Resource Adapter.

The getLocalTransaction() method provides a LocalTransaction implementation and
returns the wrapper.

For more information on transaction support, see Implementing transaction
support.
1. Click the Generate Outbound Adapter classes check box and then click on the

XATransaction Transaction Support check box in the right pane.
When you choose XATransaction Transaction Support, Local Transaction
Support is selected automatically.

2. Click Finish.

Now, you can generate command pattern classes.

Generating command pattern classes:

Command pattern classes help reduce the complexity associated with comparing
and managing dynamic object hierarchies.

42 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Review the section on command pattern classes in Generating an IBM WebSphere
Resource Adapter.

The command pattern classes allow you to break down a hierarchical update into a
series of nodes and then generate a collection of sub-commands to manage the
nodes. An interpreter processes the sub-commands, retrieving and executing the
corresponding code.
1. Click Generate Outbound Adapter Classes and then click Command Pattern

component property on the right pane.

2. Click Finish.

Generating inbound adapter classes
Generate inbound adapter classes for notifying a business process of an inbound
event from the EIS.

Review the section on inbound adapter classes and associated properties in
Generating an IBM WebSphere Resource Adapter.

When you choose to generate inbound adapter classes, the wizard creates code for
the methods that must be implemented to produce a resource adapter that can
send events from an EIS to a business process.
1. From the Available components portion of the Generation Options window,

click the Generate Inbound Adapter classes check box.

WebSphere Adapter development overview 43

covw_gen_adapter.dita

2. Review the available component property options associated with inbound
adapter classes.
Each of the component property options are described in the sections that
follow.

Generate the inbound adapter classes for the component property selected.

Note: Before deploying your adapter to WebSphere Process Server version 6.2, you
must populate all inbound properties with default values. You can also assign
dummy values to properties that are generated but not implemented by your
adapter.

Generating inbound connection pooling support:

Generate inbound connection pooling support.

When you choose the connection pooling component property the wizard will
create the ActivationSpecWithXid class that extends WBIActivationSpecForPooling.

Further implementation of this method is needed to support XA transactions.
1. Click the Generate Inbound Adapter classes check box and then click on the

Connection Pooling check box in the right pane.

Note: The Event Polling Support property is selected automatically when you
select Connection Pooling . Connection pooling is not supported for Callback
Events.

44 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

2. Click Finish.

Now, you can generate inbound event polling support.

Generating inbound event polling support:

Event polling refers to an adapter’s capability to poll the event records from the
event store at regular intervals. In each poll call, a number of events are processed
by the adapter.

Review the information on inbound adapter classes and the information on
inbound event polling support in Generating an IBM WebSphere Resource
Adapter.

When you choose to generate inbound adapter classes for event polling support,
the wizard creates code for the methods that must be implemented to produce a
resource adapter that can send polling events from an EIS to a business process.
1. Click the Generate Inbound Adapter check box and then click on the Event

Polling Support check box in the right pane.

WebSphere Adapter development overview 45

covw_gen_adapter.dita
covw_gen_adapter.dita

2. When you are finished choosing generation options, click Finish.

Now, you can generate inbound callback event classes.

Generating inbound callback event support:

Inbound callback event support alerts business processes to changes in, or new
information about, an EIS. The phrase callback refers to the ability of the EIS
system to directly notify the adapter or business processes of a change, as opposed
to the polling mechanism used in event notification.

Review the information on inbound adapter classes and the information on
inbound callback event support in Inbound callback event notification.

When you choose to generate inbound adapter classes for callback event support,
the wizard creates code for the methods that must be implemented to produce a
resource adapter that can send callback events from an EIS to a business process.
1. Click the Generate Inbound Adapter classes check box and then click on the

Callback Event Support check box in the right pane.

46 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

implementing/cinb_callback_event_not.dita

2. When you are finished choosing generation options, click Finish.

Now you can generate enterprise metadata discovery classes.

Generating enterprise metadata discovery classes
The enterprise metadata discovery classes are used by the external service
discovery tool in WebSphere Integration Developer to introspect an EIS to create
business objects and other artifacts.

Review the information on enterprise metadata discovery classes in Generating an
IBM WebSphere Resource Adapter.

When you choose to generate enterprise metadata discovery classes, the wizard
generates code for the methods needed to produce a service that you can use to
glean business object structure and other data from an EIS.
1. Click the Generate Enterprise Metadata Discovery classes check box.

WebSphere Adapter development overview 47

covw_gen_adapter.dita
covw_gen_adapter.dita

2. When you are finished choosing generation options, click Finish.

Generate data binding classes.

Generating data binding classes
You can generate data binding classes separate from the data binding classes that
are generated from enterprise metadata discovery.

Review the section on data binding classes in Generating an IBM WebSphere
Resource Adapter.

When you choose to generate data binding classes, the wizard generates code for
the methods needed to marshall data from SDO to CCI record and from CCI
record to SDO.
1. Click the Generate Data Binding classes for SCA check box.

48 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

covw_gen_adapter.dita
covw_gen_adapter.dita

2. When you are finished choosing generation options, click Finish.

Learn how to generate a JCA resource adapter.

Generating a JCA resource adapter
You use the wizard to generate adapter classes that correspond to the properties
and options you specify.

The following sections describe the J2EE resource adapter classes.

Outbound JCA resource adapter classes

Generating outbound JCA resource adapter classes creates code for the methods
that must be implemented to produce a JCA resource adapter that can send
business events to an EIS. The list of JCA 1.5 interfaces that are implemented in
your Connector Project when you choose to generate outbound adapter classes is
as follows outbound JCA adapter classes:
v ConnectionFactory implements javax.resource.cci.ConnectionFactory
v Connection implements javax.resource.cci.Connection
v ConnectionMetaData implements javax.resource.cci.ConnectionMetaData
v ConnectionRequestInfo implements javax.resource.cci.ConnectionRequestInfo
v ConnectionSpec implements javax.resource.cci.ConnectionSpec
v Interaction implements javax.resource.cci.Interaction
v InteractionSpec implements javax.resource.cci.InteractionSpec
v LocalTransaction implements javax.resource.cci.LocalTransaction

WebSphere Adapter development overview 49

v ManagedConnectionFactory implements
javax.resource.spi.ResourceAdapterAssociation,
javax.ValidatingManagedConnectionFactory, ManagedConnectionFactory

v MangedConnection implements
javax.resource.spi.DissasociatableManagedConnection, ManagedConnection

v ManagedConnectionMetaData implements ManagedConnectionMetaData

For information on how to generate outbound JCA resource adapter classes, see
Generating outbound JCA adapter classes.

Inbound JCA resource adapter classes

Generating inbound JCA resource adapter classes creates code for the methods that
must be implemented to produce a resource adapter that can send events from an
EIS to a business process. The list of JCA 1.5 interface classes that are implemented
in your Connector Project when you choose to generate inbound adapter classes is
as follows:
v ActivationSpec Implements javax.resource.spi.ActivationSpec

For information on how to generate inbound JCA resource adapter classes, see
Generating inbound JCA adapter classes.

JCA Enterprise Metadata Discovery classes

Generating enterprise metadata discovery classes creates code for the methods
needed to produce a service that you can use to glean business object structure and
other data from an EIS. The wizard also generates a discovery-service.xml file.

The list of JCA interfaces that are implemented in your Connector Project when
you choose to generate enterprise metadata discovery classes is as follows:
v DataBindingDescription implements

commonj.connector.description.DataBindingDescription
v DataBindingGenerator implements

commonj.connector.description.DataBindingGenerator
v DataDescription implements commonj.connector.description.DataDescription
v DataFile implements commonj.connector.description.DataFile
v FunctionDescription implements

commonj.connector.description.FunctionDescription
v InboundFunctionDescription implements

commonj.connector.description.InboundFunctionDescription
v InboundServiceDescription implements

commonj.connector.description.InboundServiceDescription
v OutboundFunctionDescription implements

commonj.connector.description.OutboundFunctionDescription
v OutboundServiceDescription implements

commonj.connector.description.OutboundServiceDescription
v SchemaDefinition implements commonj.connector.SchemaDefinition
v ServiceDescription implements

commonj.connector.description.ServiceDescription
v AdapterType implements commonj.connector.discovery.AdapterType
v AdapterTypeSummary implements

commonj.connector.discovery.AdapterTypeSummary

50 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

v EditableType implements commonj.connector.discoveryEditableType
v MetadataDiscovery implements

commonj.connector.discovery.MetadataDiscovery
v MetadataEdit implements commonj.connector.discovery.MetadataEdit
v MetadataImportConfiguration implements

commonj.connector.discovery.MetadataImportConfiguration
v MetadataObject implements commonj.connector.discovery.MetadataObject
v MetadataObjectIterator implements

commonj.connector.discovery.MetadataObjectIterator
v MetadataObjectResponse implements

commonj.connector.discovery.MetadataObjectResponse
v MetadataSelection implements commonj.connector.discovery.MetadataSelection
v MetadataTree implements commonj.connector.discovery.MetadataTree
v ConnectionConfiguration implements

commonj.connector.discovery.ConnectionConfiguration
v ConnectionPersistence implements

commonj.connector.discovery.ConnectionPersistence
v ConnectionType implements commonj.connector.discovery.ConnectionType
v InboundConnectionConfiguration implements

commonj.connector.discovery.InboundConnectionConfiguration
v InboundConnectionType implements

javax.resource.emd.discovery.InboundConnectionType
v MetadataConnection implements

commonj.connector.discovery.MetadataConnection
v OutboundConnectionConfiguration implements

commonj.connector.discovery.OutboundConnectionConfiguration
v OutboundConnectionType implements

commonj.connector.discovery.OutboundConnectionType
v Action implements commonj.connector.discovery.Action
v ObjectWizard implements commonj.connector.discovery.ObjectWizard
v ObjectWizardStatus implements

commonj.connector.discovery.ObjectWizardStatus
v ObjectWizardStep implements commonj.connector.discovery.ObjectWizardStep
v Operation implements commonj.connector.discovery.Operation
v OperationType implements commonj.connector.discovery.OperationType
v DataBinding implements javax.resource.runtime.DataBinding
v FunctionSelector implements javax.resource.runtime.FunctionSelector
v InboundListener implements javax.resource.runtime.InboundListener
v InboundNativeDataRecord implements

javax.resource.runtime.InboundNativeDataRecord
v RecordDataBindingImpl implements javax.resource.runtime.RecordDataBinding
v RecordHolderDataBinding implements

javax.resource.runtime.RecordHolderDataBinding
v PropertyDescriptor implements javax.resource.runtime.PropertyDescriptor
v PropertyType implements javax.resource.runtime.PropertyType
v Property implements javax.resource.runtime.Property and

javax.resource.runtime.PropertyDescriptor
v SingleTypedProperty

WebSphere Adapter development overview 51

implements javax.resource.runtime.SingleTypedProperty and
javax.resource.runtime.PropertyDescriptor

v SingleValuedProperty implements javax.resource.runtime.SingleValedProperty
and javax.resource.runtime.PropertyDescriptor

v PropertyGroup implements javax.resource.runtime.PropertyGroup and
javax.resource.runtime.PropertyDescriptor

v MultiValuedProperty implements
javax.resource.runtime.MultiValuedPropertyProperty and
javax.resource.runtime.PropertyDescriptor

v BoundedMultiValuedProperty implements
javax.resource.runtime.BoundedMultiValuedProperty and
javax.resource.runtime.PropertyDescriptor

v NodeProperty implements javax.resource.runtime.NodeProperty and
javax.resource.runtime.PropertyDescriptor

v TreeProperty implements javax.resource.runtime.TreeProperty and
javax.resource.runtime.PropertyDescriptor

v TableProperty implements javax.resource.runtime.TableProperty and
javax.resource.runtime.PropertyDescriptor

For information on how to generate Enterprise Metadata Discovery classes, see
Generating JCA Enterprise Metadata Discovery classes.

Note: If you select the IBM WebSphere Adapter Foundation Classes Support
feature check box in the Project Facets screen, then the created J2EE resource
adapter project automatically includes the IBM WebSphere Adapter Foundation
Classes library in the project libraries list of the Java Build path.

Generating outbound JCA adapter classes
The outbound adapter classes are responsible for notifying an EIS of outbound
events from a business process.

Review the section on outbound JCA resource adapter classes in Generating a JCA
resource adapter.

When you choose to generate outbound adapter classes, the wizard creates code
for the methods that must be implemented to produce a resource adapter that can
send business events to an EIS.
1. Click the Generate Outbound Adapter Classes check box.

52 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

2. When you are finished choosing generation options, click Finish.

Generate inbound JCA adapter classes.

Generating inbound JCA adapter classes
The inbound adapter classes are responsible for notifying a business process of an
inbound event from the EIS.

Review the section on inbound JCA resource adapter classes in Generating a JCA
resource adapter.

When you choose to generate inbound adapter classes, the wizard creates code for
the methods that must be implemented to produce a resource adapter that can
send events from an EIS to a business process.
1. Click the Generate Inbound Adapter classes check box.

WebSphere Adapter development overview 53

2. When you are finished choosing generation options, click Finish.

Generate JCA enterprise metadata discovery classes.

Generating JCA enterprise metadata discovery classes
The enterprise metadata discovery classes are used by the external service
discovery tool in WebSphere Integration Developer to introspect an EIS to create
business objects and other artifacts.

Review the section on JCA enterprise metadata discovery classes in Generating a
JCA resource adapter

When you choose to generate enterprise metadata discovery classes, the wizard
generates code for the methods needed to produce a service that you can use to
glean business object structure and other data from an EIS. The wizard also
generates a discovery-service.xml file.

Note: When you generate JCA enterprise metadata discovery classes, the wizard
adds a prefix to each. The prefix is the Class Name Prefix that you entered when
specifying properties on the Resource adapter properties page of the wizard.
1. Click the Generate Enterprise Metadata Discovery classes check box.

54 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

2. When you are finished choosing generation options, click Finish.

Generated code and deployment descriptor
The generated artifacts reflect the adapter classes with the properties and options
you specified.

After you specify options for your resource adapter, the wizard generates code and
a deployment descriptor in a Connector Project and then switches to the J2EE
perspective in the workspace. The wizard then automatically launches the
Resource Adapter Deployment Descriptor editor.

For a complete description of the editor, see the “Resource Adapter Deployment
Descriptor Editor overview” on page 10.

WebSphere Adapter development overview 55

Using the Resource Adapter Deployment Descriptor editor
The Resource Adapter Deployment Descriptor editor provides an easy and
convenient way to configure your resource adapter.

Resource Adapter Deployment Descriptor editor

You configure the resource adapter by using a deployment descriptor. The
deployment descriptor—the ra.xml file— is generated by the wizard and included
in your Java Connector Project.

The editor is made up multiple pages each of which represents a major section of
the ra.xml file. Changes made in the editor are saved directly to the ra.xml file in
your Java Connector Project.

The editor allows you to display and modify all elements of the ra.xml file. You
can also add properties. After each modification this file is validated against its
schema definition to ensure its validity.

Any validation problems with the ra.xml file are displayed in the Problems view
of the development environment.

Displaying the deployment descriptor
Once you complete the New Connector Project wizard your workspace is switched
to the J2EE perspective and your deployment descriptor displays using the
Resource Adapter Deployment Descriptor editor.

Displaying the deployment descriptor in the editor provides you with several
different views.

56 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Deployment descriptor Overview pane

Alternatively, you can view the deployment descriptor in the editor by
highlighting the file in the Project Explorer and selecting Open With →
Deployment Descriptor Editor from the context menu.

Displaying the descriptor editor from the context menu

You can display each of the four views by using the tabs at the bottom of the
Overview pane, which is the default view.

Descriptor editor tabs

WebSphere Adapter development overview 57

Using the Overview pane
The Overview pane provides access to general information about your resource
adapter. You can display it at any time by clicking the Overview tab at the bottom
of this pane.

In addition to providing general information about your resource adapter, you can
generate components that you may not have originally specified when working
with the wizard.

Overview pane

The General Information section summarizes general information about the
resource adapter.

The License Information section allows you to specify and display license
descriptions and requirements, if any, for the resource adapter.

The Components section provides navigation links to other panes of the editor.

The Component Addition section allows you to generate components that you
may not have originally specified when working with the wizard. Click the Add to
display the Add Component dialog box. Only those options not previously
generated will be enabled for you to select.

Note: To display the Add button for Add Component, maximize the Overview
pane. The Add button does not display when this pane is minimized.

58 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Add component dialog

The Icons section of the overview pane allows you to associate icons with the
resource adapter. You can specify a large or small icon in jpg or gif format. To fit
into the allotted area, the large icons must be 32 x 32 pixels and the small icon 16 x
16 pixels. WebSphere Process Server does not make use of these icons.

Using the Resource Adapter pane
The Resource Adapter pane displays information that is stored in the
<resourceadapter> element of the ra.xml file.

You can navigate to this pane by clicking ResourceAdapter in the Components
section of the Overview pane or by clicking the ResourceAdapter tab at the bottom
of the pane.

The sections of the Resource Adapter pane are described below.

WebSphere Adapter development overview 59

Resource adapter pane

The General Information section allows you to specify deployment descriptor
values for the entire resource adapter. This section displays the name of the
ResourceAdapter class with which this deployment descriptor is associated. This
class must directly or indirectly implement the javax.resource.spi.ResourceAdapter
interface.

The Components section provides navigation links to other parts of the editor. The
Resource Adapter pane displays links to the Outbound Adapter and Inbound
Adapter panes.

The Config Properties section allows you to specify resource-adapter-level
configuration properties. By default, all configuration properties inherited by the
class specified in the Resource Adapter Classname field in the General Information
section are shown here. You can specify default values for these inherited
properties. In addition, you can add or delete your own user-defined configuration
properties using the Add and Remove buttons on the left side of the editor. You
can also edit these properties using the widgets on the right side of the editor.

60 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Add Config property dialog

When you add, modify, or delete user-defined properties in this section, the editor
creates (or removes) the corresponding Java bean properties in your code. For
more information, see Modifying properties.

The Admin Objects section allows you to specify administered objects for this
resource adapter and configure their properties. You can add, update, or delete
administered objects and specify properties for each object. The information you
specify here will be stored at the resource adapter level of the deployment
descriptor.

The Security Permissions section allows you to specify application server
permissions. These are the permissions required by the resource adapter to execute
within the application server. You can add, update, or delete security permissions.
The information you specify here will be stored at the resource adapter level of the
deployment descriptor.

Using the Outbound Adapter pane
The Outbound Adapter pane displays information that is stored in the
<outboundresourceadapter> element of the ra.xml.

You can navigate to this pane by clicking OutboundResourceAdapter in the
Components section of the Overview pane or by clicking the Outbound Adapter
tab at the bottom of the pane.

WebSphere Adapter development overview 61

The sections of the Outbound Adapter pane are described below.

Outbound resource adapter pane

The General Information section allows you to specify deployment descriptor
values associated with the outbound resource adapter. You can specify the level of
transaction support, if any, and whether reauthentication is supported.

The Connection Definitions section allows you to specify an outbound connection
definition. This connection definition is used by the application server to obtain a
physical connection to the EIS. Clicking the Add button under the Connection
Definitions list on the left side of the editor displays the following dialog box,
which allows you to specify all required connection definition information.

62 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Add Connection Definition dialog

A Connection Definition requires the following information:
v ConnectionFactory Interface
v ConnecitonFactory Implementaion Class
v Connection Interface
v Connection Implementation Class
v ConnectionRequestInfo Class
v ManagedConnectionFactory Class

Once a connection definition is defined all properties inherited by the specified
ManangedConnectionFactory are shown in the properties list directly under the
ManagedConnectionFactory Class. You can specify default values and descriptions
for these inherited properties. In addition, you can add, update or delete your own
user-defined configuration properties using the Add, Edit, and Remove buttons on
the right side of the editor.

WebSphere Adapter development overview 63

Add Config property dialog

When you add, modify, or delete user-defined properties in this section, the editor
creates (or removes) the corresponding Java bean properties in your code. For
more information, see Modifying properties.

The Authentication Mechanisms section allows you to specify the authentication
mechanism(s) supported by the resource adapter.

Using the Inbound Adapter pane
The Inbound Adapter pane displays information that is stored in the
<inbound-resourceadapter> element of the ra.xml file.

You can navigate to this pane by clicking InboundResourceAdapter in the
Components section of the Overview pane or by clicking the Inbound Adapter tab
at the bottom of the pane.

The Inbound Adapter pane contains a Message Listeners section.

Inbound Resource Adapter pane

The Message Listeners section allows you to specify message listeners for inbound
event processing. You must specify a MessageListener type and an Activation Spec

64 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

class. Clicking the Add button under the list of Message Listeners on the left side
of the editor displays the following dialog box.

Add Message Listener dialog

Once a message listener is defined all properties inherited by the specified
ActivationSpecWithXid are shown in the properties list directly under the
ActivationSpecWithXid Class.

You can specify default values and descriptions for these inherited properties. In
addition, you can add, update, or delete your own user-defined configuration
properties using the Add, Edit, or Remove buttons on the right side of the editor.

WebSphere Adapter development overview 65

Add Required Config Property dialog

When you add, modify, or delete user-defined properties in this section, the editor
creates (or removes) the corresponding Java bean properties in your code. For
more information, see Modifying properties.

Modifying deployment descriptor properties
When you modify configuration properties, the Resource Adapter Deployment
Descriptor automatically updates source code with corresponding JavaBean
properties.

When you define configuration properties, you typically must also add them to the
source code as JavaBean properties. The Resource Adapter Deployment Descriptor
performs this and other tasks automatically:
v When you add a property using the editor, the editor adds the appropriate field

and accessor methods to the Java code for you.
v When you delete a property, the editor removes the field and accessor methods

for you.
v When you modify the type of a property, the editor adjusts the field and

accessor methods accordingly.

Note: Removing or modifying properties may cause compile errors in your code
that you must resolve.

66 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Generated bean properties
The editor maps resource adapter properties to class code. When you modify the
resource adapter, the editor performs automatic source code updates.

The table shows the generated code affected when you add, delete, or modify a
configuration property:

Class code affected by configuration property change

Configuration property Affected class code

Config Property (Resource adapter panel) ResourceAdapter

Connection Definition Property (Outbound
adapter panel)

ManagedConnectionFactory
ConnectionRequestInfo

Message Listener Property (Inbound adapter
panel)

ActivationSpecWithXid

Editing deployment descriptor source
You can view and edit your adapter’s deployment descriptor directly.

Although the Resource Adapter Deployment Descriptor editor provides a fully
functional and convenient method for viewing and editing the deployment
descriptor, you may find it useful to view or edit the ra.xml file directly. The steps
to do this are as follows:
1. Make sure that the ra.xml file is not currently displayed in the editor.

You cannot open the file if it is already open in the editor.
2. From the Project Explorer pane, select the Deployment Descriptor: Connector

<your connector name> file.
3. Right click and choose Open With → XML Source Page Editor

The XML Source Page Editor displays the ra.xml file.

WebSphere Adapter development overview 67

You can now view or modify the raw ra.xml file using the default editor provided
by WebSphere Integration Developer. When you use this editor to save this file, the
file is automatically validated against the Resource Adapter XML Schema
Definition (or .xsd) file. Any errors are displayed in the Problems pane.

Important: When using the Resource Adapter Deployment Descriptor editor
provided by the WebSphere Adapter Toolkit, you can open valid deployment
descriptors only. If you attempt to open a deployment descriptor that is not valid
(as defined by the schema), the XML Source Page Editor displays the file so that
you can fix the problem before attempting to open it in the Resource Adapter
Deployment Descriptor editor.

Implementing code from the IBM WebSphere Adapter Toolkit

Foundation Classes implementation overview
To develop a WebSphere resource adapter, you identify the JCA classes for your
project, generate subclasses of all the corresponding Foundation Classes, and then
modify or override methods as described in the individual class subsections.
Subclasses that override methods in the Foundation Classes should invoke the
super method so that generic logic is still invoked (unless explicitly indicated
otherwise).

The steps shown below provide an overview of how to build an adapter from the
Foundation Classes. Note that these steps focus on the major classes to extend. In
some cases, you must provide yet another JCA interface implementation to extend
a class; when this occurs, locate the appropriate Adapter Foundation class and
extend it for your purposes. Typically this requires minor changes only.
1. Decide which configuration properties you need for the resource adapter to

support the enterprise information system (EIS):
a. Identify configuration properties for connecting to the EIS instance for

outbound processing (for example, hostname, port).

68 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

b. Identify configuration properties suitable for use by a client for a specific
outbound connection instance (for example, username, password, language).

c. Identify configuration properties for inbound event processing in
general–this will probably be a combination of those you’ve defined in 1a
and 1b for outbound.

d. Establish a list of remaining adapter configuration properties–those not
related or relevant to inbound or outbound configurations.

2. Extend class WBIResourceAdapter and provide accessor methods for
configuration properties defined in 1d. Add these same properties to the
resource adapter deployment descriptor.

3. If the resource adapter supports inbound event processing through the event
manager Quality of Service (QoS) as described later in this user guide, modify
your WBIResourceAdapter subclass to implement interface
WBIPollableResourceAdapterWithXid and provide an implementation of
interface EventStore. If you defined additional inbound properties in 1c, beyond
what is already defined for class WBIActivationSpec, extend
WBIActivationSpecWithXid and update your deployment descriptor to reflect
this new subclass class under the supported activation specs.

4. Extend class WBIManagedConnectionFactory and add accessor methods for any
properties defined in 1A. Add these same properties to the resource adapter
deployment descriptor.

5. Extend classes WBIConnection and WBIInteraction. In your WBIInteraction
subclass, provide logic for processing requests (create, retrieve, update, and
delete operations). In your WBIConnection subclass, simply provide the ability
to generate a new WBIInteraction instance.

6. Extend WBIStructuredRecord and implement the getNext() and extract()
methods. If the adapter is intended to be used in an SCA environment,
implement data bindings.

7. Extend class WBIManagedConnection and provide logic to physically connect and
disconnect to the EIS. In the getConnection methods, simply return the
WBIConnection subclass created above.

8. If you defined additional connection-specific properties in 1b beyond what is
already defined in classes WBIConnectionRequestInfo and
WBIConnectionRequest extend both and add these properties.

See the Adapter Foundation Classes Javadoc for the complete descriptions of the
classes.

Data model
In any system where heterogeneous components exchange data, a common data
model or object format is crucial. With a common data model, system components
know what to send and what to expect in return.

For Websphere Process Server and Websphere Enterprise Service Bus, this data
model is called a business object. The adapters handle data internally, in a
format-independent manner, using the Data Exchange Service Provider Interface
(DESPI). In the WebSphere Process Server and WebSphere Enterprise Service Bus
environment, a data binding produces and consumes the business objects, and
communicates with the adapter using the Data Exchange SPI.

The JCA 1.5 specification defines an optional CCI Record model.

The business object data model provides for the following:

WebSphere Adapter development overview 69

v A full, working implementation, as opposed to the CCI Record model that
simply defines interfaces that must be implemented by the adapter developer.

v A built-in support for tracking changes at both the object and property levels,
which allows for improved efficiency in processing and reduced bandwidth
requirements for exchanging data.

v The business object data model is based upon the open-standard service data
object (SDO) model that is supported by IBM and others (visit www.eclipse.org
for more information).

v The business object data model aligns well with the larger WebSphere
service-oriented architecture (SOA) strategy which, going forward, will better
enable interpretability with other WebSphere-based applications.

Relationship of business objects to service data objects
At the technical level, the WebSphere business object model maps directly to the
service data object (SDO) model: a WebSphere business graph and business object
correspond to an SDO data graph and data object.

A business graph is a top-level structure that defines a single child business object
which can itself contain zero or more child business objects.

Using a business graph optional. Use it to provide a change summary for applying a
delta updates to hold metadata about its child business objects.

Business graph

After-images versus deltas
Two distinct types of business objects, after-image and delta, are used to convey
different kinds of information.

After-Image business objects can be thought of as a snapshot of the data in time;
they reflect how the EIS entity looks (for inbound events) or is expected to look
(for outbound requests). An after-image business object should represent the entire
entity structure in the EIS. For example, if an ORDER object with UPDATE verb is
sent to the adapter, and the order has two ORDER_LINE children, the object in the
EIS should be modified to reflect the input; if the EIS’s representation of that object
had only one ORDER_LINE, it will have two after the processing has completed.

Delta business objects reflect the specific changes that have occurred (for inbound
events) or that the user wants affected (for outbound requests) in the EIS. Each
business object contains a changeSummary structure that can store all the pending

70 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

http://www.eclipse.org

changes. For outbound requests, the adapter must interpret the change summary,
making all applicable changes to the data. For example, if an ORDER_LINE has
been added to an ORDER object, the ORDER_LINE will appear as Created in the
change summary. The adapter is responsible for finding that ORDER, and adding
the ORDER_LINE to it.

Verbs
A verb is a property of a business graph.

If the data object being processed by the adapter has no business graph, there will
be no verb.

The AppplyChanges function, when passed a business graph, can perform either an
afterimage function or a delta update. If the verb is populated, the adapter will
perform the operation indicated by the verb. If no verb is present, the change
summary will be used to perform a delta update.

When encountering a delta business object, a component can introspect the change
summary to determine what actually occurred.

Verbs versus operations
Verbs and operations are similar conceptually but serve different purposes.
Operations reflect the functions that an adapter can perform. An operation is
directly related to the adapter performing it. By contrast, a verb is directly related
to the business object in which it is specified. In general, the verb defined for a
business object should match the operation but not always; some operations are
unrelated to the verb.

An example helps illustrate the difference between verbs and operations. If you
wanted to create a new entity in the EIS using an after-image business object, you
would specify an object verb of Create. Accordingly, a Create operation would
invoke the adapter. If you invoke an adapter Delete operation with an object that
had a Create verb, the adapter would report an error.

However, some operations, specifically those that do not fall under Create, Update,
or Delete, do not require verbs. For example, the Retrieve operation of adapters,
which has the adapter query the EIS to find an entity that matches the business
object, does not expect a verb. This Retrieve operation is unconcerned with what
action lead to the business object being created (the information reflected by the
verb); rather it is concerned only with retrieving an EIS entity that is reflected by
the object.

Note: The only time verbs are part of adapter processing is when the object has a
business graph, and the function used is applyChanges. In that case, and only that
case, the verb dictates the processing to be performed by adapter.

Business object standards

Business object naming:

EIS object names are extracted during the metadata import process. These names
often must be modified for use with a resource adapter. Business object names,
such as Customer or Address, must reflect the data structures they represent and
follow a camel case initial capitalization format.

WebSphere Adapter development overview 71

Convert business object names from EIS-assigned formats to a camel case format
(remove separators such as spaces or underscores and capitalize first letter of each
word). For example, convert the EIS name, ORDER_LINE_ITEM, to OrderLineItem.

As described in the WebSphere business object specification, name the parent
business object graph for the contained business object followed by BG. For
example, CustomerBG is the parent object graph for a Customer business object.

Business objects names as well as property names should have no semantic value
to the adapter. When you develop your adapter logic, be sure that it is based on
metadata as opposed to naming conventions.

Standard operations:

As described by the JCA specification, a resource adapter is generally intended to
expose low-level, EIS-specific operations. These EIS-specific operations range from
create, retrieve, update, and delete (for database-type applications) to those that are
unique to customer EIS instances (for function-based adapters such as SAP).

The WebSphere business object model and a variety of WebSphere components
(such as the relationship management service) assume that most adapters support
a set of standard create, retrieve, update, and delete operations. This leaves a gap
for most adapters where the supported low-level operations do not natively meet
the expectations of other WebSphere components. To fill this gap, all adapters
should support higher-level create, retrieve, update, and delete operations,
depending on what is provided by the EIS. With such support, a Create operation
for one adapter follows the same naming conventions and behavior as a Create
operation for another adapter. The result is better tooling and consistency in terms
of user experience.

The following are the supported, standard top-level operations:

Supported standard top-level operations

Inbound Operation Signatures Notes

emitCreateAfterImage<BOType>
emitUpdateAfterImage<BOType>
emitDeleteAfterImage<BOType>

These operations should generate
after-image business objects with verbs that
match the operation signature; for example,
emitCreateAfterImageCustomer should
generate a Customer object with verb Create.

emitDelta<BOType> This operation should generate a delta
business object with a summary depicting
the changes that occurred in the EIS.

72 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Outbound Operation Signatures Notes

applyChanges<BOType>
create<BOType>
update<BOType>
delete<BOType>

These operations can handle delta or
after-image business objects. The assumption
is that the adapter can consume either type
of object or, if not, can convert after-image
and delta as required by the business object
structure.

For applyChanges, the adapter determines
the operation (create, update, or delete)
based on the top-level verb or the change
summary.

applyChanges allows users to easily pass any
create, update, or delete business objects.

The create, applyUpdate and delete
operations are specific to one operation.
Note that applyChanges, for after-images,
should invoke the appropriate <x>
operation.

Exceptions: If the adapter cannot support
delta for a given business object type
(because it lacks retrieve capability to
convert), a signature of
applyAfterImage<BOType> may be
substituted.

retrieve<BOType> Retrieve one object based on key values.

retrieveAll<BOType> Retrieve multiple objects that match some
user-defined predicate; this is a query option
intended to replace RetrieveByContent.

RetrieveAll should always return a
top-level container with 0..n matching child
business objects. It should never return a
single top-level matching business object as
with the Retrieve operation.

Standard processing logic:

Each adapter should enable operations that are supported by the EIS.

General guidelines for operations with adapters include the following
v All operations should be atomic: if an operation fails for any reason, the adapter

should roll back any partial changes made to the EIS as part of the request.
v For all operations, adapters should never modify the input business object

passed by the client (per JCA standards). Instead, if the operation requires the
same object passed as input to be returned as output, use WebSphere Business
Integration utilities to create, modify, and return a deep copy of the input object.

v If child objects are included in the input business object, the order of child
objects should be maintained in the output business object. Doing so enables
relationship management service support.

v If an after-image is passed to the adapter as input, an after-image should be
returned as output. The same applies for deltas.

WebSphere Adapter development overview 73

v Adapters should follow strict conventions in processing business objects. This
includes failing if an entity is marked as updated in the input business object
but does not exist in the EIS (rather than attempting to create the entity in the
EIS).

isSet property:

WebSphere business objects support an isSet property.

isSet property

The isSet() API of the DESPI InputAccessor determines if a given business object
property has been set. When isSet() is false the adapters should ignore the specific
attribute while processing the request.

Strict interpretation of requests:

An adapter should always fail if the user provides data that is inconsistent with
either the behavior of the adapter or the state of the EIS. This requires more effort
from maps or users to ensure that data is appropriate before exposing it to an
adapter. That effort also reduces the chance of miscommunication (that is, that the
adapter will do something unintended).

If an adapter receives a request in which a business object is marked as created
but, in fact, an entity already exists in the EIS with the given key values, the
adapter should fail immediately.

Some WebSphere Adapters have historically made a best effort and defaulted to an
update in such cases. Such adapters attempted to interpret the request and make
every effort to complete it.

ApplyChanges operation:

The applyChanges operation is a catch-all operation that enables users to send any
create, update, or delete business object to the resource adapter for processing
based on the verb.

The applyChanges operation saves effort and simplifies mapping with simple
logic: for after-image business objects, the applyChanges operation should look at
top-level verb in the business object and then call create, update or delete as
appropriate; when applyChanges is invoked without a verb, this is a delta
operation. The adapter should read the SDO change summary and perform all the
changes indicated in the change summary.

After-image Create operation:

The after-image Create operation generates a new entity in the EIS that matches
the data and structure of the input business object. The business object returned by
this operation should accurately reflect the newly created entity in the EIS.

Processing overview

The processing of the after-image create operation, which starts at the top-level
business object, is as follows:
1. Create an entity in the EIS corresponding to the type of the input business

object

74 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

2. If the EIS does not generate its own primary key (or keys), insert the key
values from the input business object into the appropriate key column (or
columns) of the EIS entity.

3. Update the output business object to reflect the values of the newly created EIS
entity; this includes any EIS-generated key values or properties marked as
having potential side-effects (see property-level metadata).

4. Recursively create the EIS entities corresponding to the first-level child business
objects, and continue recursively creating all child business objects at all
subsequent levels in the business object hierarchy.

Operation return value

The output written to the output cursor should contain any newly-created key
values and other side effects.

Error handling

The DuplicateRecordException exception is thrown if the EIS already contains an
entity with the same key values as a business object to be created.

The InvalidRequestException exception is thrown if any of the following inputs to
the operation ate not supported:
v If key values are specified in the input business object but the EIS supports

auto-creation only
v If key values are not specified in the input business object but the EIS requires

them
v If the top-level verb, if provided, is not Create (assertion optional)

The EISSystemException exception is thrown if the EIS reports any unrecoverable
errors.

After-image Update operation:

The after-image update operation modifies an EIS entity so that it and its child
objects match the data and structure of the input business object. It requires an
explicit comparison of the input business object to the EIS system.

Processing overview

After-image update processing is as follows:after-image Update
v Compare the existing business object in the EIS with the input business object

and create, update, or delete entities to match the input as follows:
– If child entities exist in the application, they are modified as needed.
– Any child business objects contained in the hierarchical business object that

do not have corresponding entities in the EIS are added to the EIS.
– Any child entities that exist in the EIS but are not contained in the business

object are deleted from the application.
v Update the output business object to reflect the modified EIS entities; this

includes any EIS-generated key values or properties marked as having potential
side-effects (see property-level metadata).

WebSphere Adapter development overview 75

Operation return value

Note: When writing the output values to the output cursor, be sure to include any
generated keys or other side effects.

Error handling

Error handling behavior includes any and all exceptions thrown by create and
delete operations plus the following:

RecordNotFoundException is thrown if the EIS does not contain an entity with the
same key values as the business object to be updated.

EISSystemException is thrown if the EIS reports any unrecoverable errors.

MissingDataException is thrown during adapter operations to indicate that not all
the necessary information has been provided as required.

InvalidRequestException is thrown during adapter operations during adapter
operations to indicate poorly formatted data was provided.

After-image Delete operation:

The after-image Delete operation removes an existing entity and any contained
child entities from the EIS.

Processing overview

The after-image Delete operation is processed as follows:
1. Perform a recursive retrieve on the input business object to obtain all data in

the EIS that is associated with the top-level business object.
2. Perform a recursive delete on the entities represented by the input business

object, starting from the lowest-level entities and ascending to the top-level
entity; non-contained entities should be left intact although any relationships to
deleted objects should be removed if explicitly defined in the EIS.

Note: Adapters should also delete any and all contained children whether or not
they are reflected in the input business object. For example, if just a top-level
business object is provided with keys and no children, the adapter should still
check for contained children in the EIS and delete them.

Operation return value

Since the deletion of an entity in the EIS only requires a return that indicates the
success (or failure) of the operation, the goal is to convey this with as little
overhead as possible. The Delete operation might or might not return anything.
The adapter should handle the case where the output record is initialized with the
same metadata as the input cursor. In this case, it is not necessary to populate the
output data on getNext, apart from the key information.

Error handling

The RecordNotFoundException exception is thrown if the EIS does not contain an
entity with the same key values as the business object to be deleted.

76 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

The InvalidRequestException exception is thrown if input to the operation is not
supported.

The EISSystemException exception is thrown if the EIS reports any unrecoverable
errors.

Retrieve:

This operation rebuilds the complete business object hierarchy. The adapter ensures
that the returned hierarchical business object matches exactly the database state of
the application entity.

The Retrieve operation accepts either an after-image or delta business object. The
comparison in either case will be by equality only. Non-key values are allowed as
match criteria.

The request business object can contain any of the following:
v A top-level business object but no child objects, even though the business object

definition includes children.
v A business object that contains the top-level business object and some of its

defined children.
v A complete hierarchical business object containing all child business objects.

The difference between Retrieve and RetrieveAll is that Retrieve is intended to
return a single, unique business object that meets user-defined criteria whereas
RetrieveAll returns multiple matching business objects. For example, use Retrieve
to find Customer where id=″abc123″ and RetrieveAll to find all Customers where
state=″NY″.

Processing overview

Retrieve processing is as follows:

When the retrieve operation is invoked, it is preferable to retrieve the record
information from the EIS and put it into the output structured record, where
getNext() will populate that information into the output cursor. If it is not possible
to retrieve the information from the EIS until getNext() is called, it is acceptable to
perform the entire retrieve operation inside of the getNext() method.

Error handling

RecordNotFoundException is thrown if any populated properties in the input
business object does not exist in the EIS.

MultipleMatchingRecordsException is thrown if more than one record match input
criteria.

EISSystemException is thrown if the EIS reports any unrecoverable errors.

RetrieveAll:

RetrieveAll returns a batch of records that match the values provided in the
request business object. The records are returned as a collection of business objects
through a top-level container business object.

WebSphere Adapter development overview 77

CCI clients of resource adapters that support batch results must be capable of
recognizing a top-level container and iterating through the child objects that
represent the results of the query. The client can then extract any individual
business object in the container and deliver it to the rest of the system as with any
single business object. This obviously requires the creation of additional business
object container structure definitions by the user or during metadata import for
each business object type that the user intends to query in batch. The business
object container is shown in the illustration.

Address
Business Object

Customer
Business Object

Customer container BO

Address
Business Object

Customer
Business Object

Business object container

This approach is favored over that of the JDBC-style ResultSet support as described
in the JCA specification. However, if an EIS provides native ResultSet support or if
it makes sense then adapter developers are encouraged to implement the CCI
ResultSet interfaces to provide customers with a high-performance alternative to
the generic batch retrieval approach described in this document.

The container object is produced by the data binding for use in the Websphere
Process Server or Websphere Enterprise Service Bus environment. Internally, the
adapter will model the multiple retrieved records as a list of top-level records that
can be iterated over using the getNext() method of the output Record.

Note: The use of the operation name RetrieveAll rather than RetrieveByContent
(as used by the WebSphere Business Integration adapters) distinguishes this
operation as a new and clear standard. Support for RetrieveByContent was
inconsistent across previous adapters: some would retrieve a single object and
return special error codes if there were more objects that matched while other
adapters would create special containers to return multiple values.

78 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Note: The RetrieveAll operation always returns a result set regardless of how
many (if any) matches are found.

Processing overview

RetrieveAll processing is as follows:

RetrieveAll should make the adapter ready to return multiple objects. For each of
the objects that will be returned, the ″getNext()″ method will be called. Each call to
″getNext″ should advance the cursor to the next top-level record.

Note: Adapters should check the property MaxRecords in the WBIInteractionSpec
instance to determine the maximum number of records to return in order to avoid
out-of-memory issues.

Operation return value

The adapter performs a query and retrieves a result set of all objects that match a
given set of values. The output object is a container that holds an 0..n objects of the
same type as the input object.

Error handling

RecordNotFoundException is thrown if any populated properties in the input
business object do not exist in the EIS.

MatchesExceededLimitException is thrown if the number of hits in the EIS exceeds
the value of MaxRecords as defined in the interaction specification. The property
MatchCount will contain the actual number of hits that the adapter had in the EIS
so that users can either increase their limit or refine their search appropriately.

EISSystemException is thrown if the EIS reports any unrecoverable errors.

Custom operations:

Adapters support custom operations that enable more robust means of
interrogating or modifying the EIS. Custom operations include Execute (to execute
a stored procedure or script) or Lock (to lock an entity in the EIS).

For custom operations, implementations should accept both after-image and delta
business objects and simply use the values provided in the data portion of the
business graph. For example, if a delta is provided without enough information to
perform a custom request operation, the adapter should attempt to retrieve the
necessary information from the EIS application when possible or throw an
InvalidRequestException that expands missing data.

For custom operations, implementations can interpret the data coming in the input
cursor in any way that is desirable. Be sure to throw the appropriate exceptions if
the input data is insufficient.

Inbound event notification
When you enable inbound event-notification, business processes are alerted to
changes in, or new information about, an EIS.

Inbound event notification complements outbound request processing, enabling
adapters to provide bi-directional communication between business processes and

WebSphere Adapter development overview 79

EIS applications. Depending on the underlying EIS, the business events an adapter
generates may span the set of changes that have occurred to a given entity in the
EIS, such a customer changing the quantity in their order from 10 to 100, to a
complete document or binary payload such as an insurance claim form submitted
in XML.

Although each EIS application is unique, most adapters implement inbound
event-notification in similar ways:
1. Create an event store in the target EIS to persist changes or other relevant event

data that is published by the adapter.
2. Implement an event detection mechanism in the EIS. This mechanism is

responsible for detecting any changes of interest (to the adapter) in the EIS and
recording them in the event store.

3. Implement an event retrieval mechanism in the adapter that can detect and
retrieve events from the event store described in (1) above.

4. Implement a data transformation mechanism in the adapter to convert EIS
events to WebSphere business objects for use by target business processes.

Inbound event notification

Using the IBM WebSphere Foundation Classes for inbound event
notification
Although not required, use of the IBM WebSphere Foundation Classes is strongly
recommended for adapters that need to provide event notification.

Using the Foundation Classes can dramatically simplify the often complicated
implementation of event retrieval and publication. The Foundation Classes can
automatically track endpoints (the consumers of events) for the adapter, control the
polling for and delivery of events, handle recovery of events if the adapter
unexpectedly terminates, and assure once-and-only-once event delivery. This
allows developers to provide greater quality of service (QoS) in less time and also
ensure that behavior across adapters is consistent.

In order to employ the Foundation Classes for event-notification, the adapter and
EIS application must meet requirements described in the following sections.

80 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Event Store Requirements
1. Event data must be persistent. Once detected in the event store, an event

should remain available there until deleted by the adapter regardless of
connection failure or time elapsed.

2. The event store must allow the adapter to both identify and change the state of
event records in the event store.

Adapter Requirements

To manage application-specific events, the Foundation Classes require that you
provide application-specific logic, if any. To do this, you must:
1. Ensure that any subclass of com.ibm.j2ca.base.WBIResourceAdapter implements

interface com.ibm.j2ca.WBIPollableResourceAdapter. This interface allows the
Foundation Classes to acquire an EventStore implementation that specifically
reflects the EIS application.

2. Provide an implementation of the
com.ibm.j2ca.extensions.eventmanagement.EventStore interface. This interface
allows the Foundation Classes to manage events in the store without requiring
specific knowledge of how and where the event store is implemented.

3. Extend WBIActivationSpecForXid to include the base polling properties.
There is an alternate ActivationSpec, called WBIActivationSpecForPooling, that
contains two additional properties; Minimum connections, and
MaximumConnections. These properties are used by the event manager to
establish a connection pool of EventStoreWithXid instances. Each instance of
EventStoreWithXid is treated as a ″connection″.
If the user sets MaximumConnections to a value greater than 1, and the
delivery type is set to a value other than ″ORDERED″, multiple threads will be
used in delivery, and each delivery thread can potentially be assigned a discrete
connection.
If you decide to use WBIActivationSpecForPooling, keep in mind that
″createEventStore″ can be called multiple times on your adapter, so be sure to
handle this appropriately.

Application Requirements

In many cases–and even when your adapter does not implement the Foundation
Classes–an application must also be configured or modified before the adapter can
use the event-notification mechanism.

Modifications to the application might include setting up a user account in the
application, creating an event store and event table in the application database,
inserting stored procedures in the database, or setting up an inbox. If the
application generates event records, you might need to configure their text. You
might also need to configure the adapter to use the event-notification mechanism.
For example, a system administrator might need to set adapter-specific
configuration properties to the names of the event store and event table.

Assured once-and-once-only event delivery
XA transactions support once-and only-once event delivery.

Assured once-and only-once delivery is implemented with an XAResource. The
XAResource keeps track of transaction IDs in the event table. The event table
contains an XID (string) field. The adapter queries and updates that XID field.

WebSphere Adapter development overview 81

During recovery, WebSphere Application Server calls the resource adapter, queries
it for XAResources, and then performs transaction recovery as follows:
v Transactions that the J2EE container rolls back have not been delivered and are

marked NEW.
v Transactions that the J2EE container commits have been delivered; these are

deleted.

Implementing an event store in the EIS
An event store is a persistent storage area in the EIS application where event
records are saved until the adapter can process them. The event store might be a
database table, application event queue, email inbox, or any type of persistent
store. A persistent event store enables the application to detect and save event
records for the adapter even when the adapter is not operational.

Note: Always consider performance implications and scalability when choosing
where and how to implement an event store. For example, if you are building an
adapter for a database application, an event store represented as a table in the
database will most likely perform more efficiently than an event store implemented
in an external event inbox.

Event records:

There are no hard and fast rules governing the structure or content of an event
record in the event store. The goal is to provide enough information for the
EventStore interface implementation to successfully generate a business object that
represents the event.

Common event record fields

Field Description

Event Identifier (ID) A unique identifier for the event

Object Key The application-specific data that uniquely
identifies the entity that occasioned the
event.

Business Object Name The type of the business object that maps to
the entity.

Verb The operation that triggered this event:
create, update, delete, and so on.

Timestamp The time at which the application generated
the event.

Status The status of the event. This is used by the
Foundation Classes to track which events
are new, in process, or processed.

XID The transaction ID.

Event Identifier (ID)

Each event requires a unique identifier for tracking purposes. This identifier can be
a number generated by the application or a number generated by a scheme that
your adapter uses. The event might generate a sequential identifier, such as 00123,
to which the adapter adds its name. In such an event ID numbering scheme, the
resulting object event ID is MyAdapterName_00123. Another technique might

82 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

generate a timestamp to identify an event, producing an identifier such as
MyAdapterName_06139833001005.

Object Key

Each event should contain enough key information to enable the adapter
event-retrieval mechanism to locate and retrieve the full entity in the EIS for which
this event was originally recorded. The structure and content of this key is up to
you.

For reference, a key is typically comprised of easily-parsed values such as
name-value pairs. For example, Customer_ID=123 or, for a composite key,
Model=Widget;Color=CanaryYellow.

Business Object Name

Since the EIS entity identified in each event is converted to a business object
instance, the type of the business object must either be specified or derivable at run
time by the event-retrieval mechanism.

The most straightforward approach is to include the business object name value in
the event record. Specifically, the business object graph type should be included;
for example, CustomerBG or OrderBG.

Note: The namespace, which is also required for business object creation, need not
be included in the event; the namespace is user-defined and should be retrieved by
the adapter from the adapter ActivationSpecWithXid instance.

If, as an adapter developer, you choose to derive the business object graph type,
you are strongly advised against mandating any specific EIS entity name to
business object type mapping schemes. Business object properties and names are
unreliable because they can be modified by users. To avoid such problems,
adapters should always process business objects using metadata.

Verb

The verb should reflect the operation that this event represents. For example, if this
event reflects the creation of an entity in the application, the verb would be Create.
This value should be one of the standard verbs used by adapters (including Create,
Retrieve, Update, Delete) and specified in the business object generated for the
event. When properly specified in the business object, the verb allows consumers
of the business object event to determine what action to take on the event.

Note: The default function selector implementation (WBIFunctionSelector) uses the
verb passed in the event business object to determine the appropriate SCA EIS
import operation. Be sure that verbs used here correspond to the operations
defined by your adapter enterprise metatdata discovery implementation.

Timestamp

The Foundation classes use the timestamp to ensure proper ordering of events. For
example, use of a timestamp prevents an event describing the deletion of an Order
from being published before an event describing the creation of that same Order.
The timestamp should provide detail sufficient to distinguish events occurring
close in time.

WebSphere Adapter development overview 83

Status

The event status is used to track the state of an event. It allows the Foundation
Classes to distinguish among events that are new from those in process or
ineligible.

The adapter must support five different event status values as described in the
table below. All events generated by the event detection mechanism in the EIS
should be in the initial state of New. Only the Foundation Classes, through the
EventStore.updateEventStatus method, change event status.

Possible Event Statuses

Event Status Description Foundation Class Constant

New The event is ready to be
processed.

NEWEVENT

In Progress The adapter is processing
this event. Note that an
event in this state may or
may not yet be delivered.

INPROGRESS

Processed The adapter successfully
processed and delivered the
event.

PROCESSED

Failed The adapter was unable to
process this event due to one
or more problems.

FAILED

Unsubscribed The adapter processed the
event but found no
interested subscribers

UNSUBSCRIBED

XID

The XAResource uses this string field to track transaction IDs in the event table.
The adapter queries and updates that XID field. During recovery, WebSphere
Application Server calls the resource adapter, queries it for XAResources, and then
performs transaction recovery based on the XID.

Event object:

An event object is an instance of the
com.ibm.j2ca.extensions.eventmanagement.Event class as defined in the Foundation
Classes. An event object is the common representation of an event in the Adapter
Foundation Classes and it is populated from an event record in the
getSpecificEvent(String eventId) method described in the Implementing the
EventStore Interface section.

Event object fields

Field Description

eventID Corresponds to the Event Identifier field of
the event record

eventKeys Corresponds to the Object Key field of the
event record

84 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Field Description

eventType Corresponds to the Business Object Name
field of the event record

timeStamp Corresponds to the Timestamp field of the
event record

eventStatus Corresponds to the Status field of the event
record

Event detection:

Events detection mechanisms reflect the sources that trigger them: user actions in
the application, batch processes that add or modify application data, or database
administrator actions.

When an event detection mechanism is set up in an application and an application
event associated with a business object occurs, the application must detect the
event and write it to the event store.

Event detection mechanisms are application dependent. Some applications provide
an event detection mechanism for use by clients such as adapters. The event
detection mechanism may include an event store and a prescribed way of inserting
information about application changes into the event store. For example, one type
of implementation uses an event message box that receives messages from the
application when it processes an event of interest to the adapter. The adapter
application-specific component periodically polls the message box for new event
messages.

Other applications have no built-in event detection mechanism but have other
ways of providing information when application entities change. If an application
does not provide an event detection mechanism, you must use whatever
mechanism is available to extract information on entity changes for the adapter.
Among those mechanisms are database triggers, exit calls to programs that write to
event stores, or extracting information from flat files that aggregate application
changes.

In all cases, the event detection mechanism should ensure data integrity between
an application event and the event record written to the event store. For example,
the generation of an event record should not occur until all required data
transactions for the event have completed successfully.

Steps Involved

In general, an application event detection mechanism should take the following
steps:
1. Detect an event on an application entity.
2. Create an event record.

To create the record, the event detection mechanism should:
1. Generate a unique event identifier (ID).
2. Set the object key to the primary key of the application entity.
3. Set the verb to the action that occurred in the database.
4. Set the event timestamp.

WebSphere Adapter development overview 85

5. Set the name of the WebSphere business object complexType that corresponds
to this application entity

6. Set the event status to New.

Implementing event retrieval in the adapter
The careful work of implementing event retrieval in the adapter uses two
Foundation Classes interfaces. The goals are setting up event polling and a safe,
reliable connection to the event store.

Adapters that employ the Foundation Classes for event retrieval must meet the
following requirements:
1. Implementing interface com.ibm.j2ca.base.WBIPollableResourceAdapterWithXid

in any WBIResourceAdapter subclass.
2. Implementing interface

com.ibm.j2ca.extensions.eventmanagement.EventStoreWithXid

The first requirement identifies (for the Foundation Classes) the adapter for event
polling. If this interface is implemented, the Foundation Classes automatically
begin checking for and publishing events as dictated by polling-related
configuration properties such as PollPeriod and PollQuantity and as specified by
active adapter endpoints.

The second requirement, implementation of the EventStoreWithXid interface,
typically requires the most (adapter) development effort. As the location and
structure of each event store is application-specific, the EventStoreWithXid interface
provides the Foundation Classes with a common means of querying and
modifying an event store.

Implementing an EventStore Interface

An EventStore implementation is responsible for establishing and managing a
connection, if necessary, to the underlying EIS application. The EventStore
implementation should be thread-safe because it will be accessed on multiple
threads in Unordered delivery mode.

The table below describes the methods that each EventStore implementation must
provide:

EventStore methods

Method Description

public void setEventTransactionID(Event
event, XidImpl xid) throws
ResourceException, CommException

This method should store the xid in the
Event table in the same row specified by
event. xid.toString() will serialize the Xid for
easy storage.

public Xid[] getPendingTransactions()
throws ResourceException, CommException

This method should return the XIDs for
events that have an associated XID, but are
still in NEWEVENT status.

public Event getEventForXid(XidImpl xid)
throws ResourceException, CommException

This method should return the event
associated with the given Xid.

86 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Method Description

ArrayList getEvents(int quantity, int
eventStatus, String[] typeFilter)

This method enables the adapter to
determine if there are any new events
available or old events that need re-sending.
Implement this method to query the event
store and return a list of event instances (up
to the limit specified by thequantity
parameter) that have a status matching the
value of parameter eventStatus. The order
of events returned in ArrayList should
reflect the sequence of events as intended for
publication.

If this EventStore implementation supports
filtering as specified by method
implementsFiltering, this method should
inspect the value of parameter typeFilter. If
typeFilter is not null, the method should
return events that match the type(s)
specified only. If typeFilter is null (or
filtering is not supported), the method
should simply return events of all types.

boolean implementsFiltering() This method provides the Foundation
Classes with information on the capability of
the EventStore implementation. If it can
filter events by type in method getEvents,
the implementation should return true;
otherwise it should return false.

Event getSpecificEvent(String eventId) This method should reconstruct a complete
event object for the event identifier. This will
most likely require that the EventStore
implementation query to retrieve the
missing information from the event record in
the EIS (for example, object type, status, and
so on).

Object getObjectForEvent(Event event) The EventStore implementation should
inspect the event passed and return a
business object instance reflecting the
changed entity in the EIS application. For
example, if the event specifies an object type
of CustomerBG and a key value of
CustomerID=123, this method might be
expected to return a CustomerBG instance
populated with the values from customer
123 in the EIS.

void deleteEvent(Event event) The EventStore implementation should
delete the event record identified from the
underlying EIS event store.

void updateEventStatus(Event event, int
newstatus)

The EventStore implementation should
modify the event record identified with the
provided status code.

Transaction Support Methods

If the implementation of the event store supports transactions, the EventStore
implementation should provide access to that transaction control using the
following methods:

WebSphere Adapter development overview 87

EventStore transaction control methods

Method Description

boolean isTransactional() Is the event store transactional? If so, this
method should return true.

void commitWork() This method should commit the pending
transaction. It is required only if transactions
are supported.

void rollbackWork() This method should rollback any
uncommitted work. It is required only if
transactions are supported.

Possible event store implementations
An event store is usually implemented in a database, however, any structured
persistence mechanism could be used

Implementing the event store with a database:

If an EIS application incorporates a database, you can use the database to store
event information.

Where to store events

To locate the event store in the EIS application database, you must create a new,
separate WebSphere event table there. The table then functions as the event store
for event records. Each column of the table would reflect one of the fields
mentioned in Table 1; each row would reflect a unique event.

Implementing event detection

If the application has no built-in method for detecting events and the database that
the application is running on provides database triggers, you could implement
row-level triggers to detect changes to application tables. When changes occur in
one of these tables, the triggers would write new event records to the event table.

Note: If possible, avoid full table scans of existing application tables as a way of
determining whether application tables have changed.

Retrieving events

The EventStore implementation would need to employ the available database APIs
to gain access to the contents of the event table.

Event store implementation

88 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Function selector:

Function selectors map resource adapter events to corresponding SCA export
function names.

The WebSphere Adapter component that exposes resource adapters as SCA
components requires what is known as a function selector. This selector maps
events generated by resource adapters to a SCA export function name. For
example, an adapter may generate an after-image Customer event with top-level
verb Update, which the user expects to be published using the function
emitCreateAfterImageCustomer.
public interface FunctionSelector {

public String generateFunctionName(Object[] argObjects) throws MetadataException;
}

The StructuredDataFunctionSelector class looks at metadata within the
StructuredRecord to generate a function name. It will create a function name as
follows ″emit[OperationName]AfterImage[RecordName]″, where OperationName is
an operation stored in the record as the operationName property, and RecordName
is the value stored in the recordName property.

For more information on the FunctionSelector interface, see the Metadata
Discovery Specification.

For example, if the StructuredDataFunctionSelector received an event such as
CustomerBG with TopLevelVerb Create and containing a business object of type
Customer, the WBIFunctionSelector class would generate a function name such as
emitCreateAfterImageCustomer. For the same business graph with no
TopLevelVerb, the function name emitted might be emitDeltaCustomer.

Error handling for events:

Event error handling depends on the delivery type and the kind of endpoint
involved.

If the endpoint throws an exception during delivery, the event manager will stop
delivering events to that endpoint, and the timer task for polling stops. If the
delivery type is ORDERED, the remaining events polled in that cycle are not
delivered until the event with the error is processed. If the delivery type is
UNORDERED, the event manager attempts to deliver the remaining events in the
current poll cycle. When the endpoint is taken offline and reactivated, the event(s)
in which the error occurred is re-delivered, and normal delivery of subsequent
events resumes. If the endpoint is transactional and the transaction rolls back, the
event manager responds as if the endpoint threw an exception.

If the implementation throws an exception during the getObjectForEvent call (for
retrieval of the full event), the event manager marks the status of that event in the
event table asERROR_PROCESSING_EVENT. If the delivery type is ORDERED, the
polling task stops until the endpoint is reactivated. If the delivery type is
UNORDERED, the polling task continues.

Inbound callback event notification
An EIS application’s capability to call the adapter directly, by registering a listener,
is known as a callback. If your application supports the callback capability, you can
make use of callback event notification support in the adapter foundation classes.

WebSphere Adapter development overview 89

When you enable inbound callback event notification, business processes are
alerted to changes in, or new information about, an EIS. The phrase callback refers
to the ability of the EIS system to directly notify the adapter or business processes
of a change, as opposed to the polling mechanism used in event notification.

Callback event notification complements outbound request processing, enabling
adapters to provide bidirectional communication between business processes and
EIS applications.

Generally, in a callback scenario, the adapter will need to setup event listeners to
receive callback events from the EIS. Callback event processing could be either
synchronous (REQUEST-RESPONSE) or asynchronous (ONE-WAY).

Request and response callback events
A request and response callback event is a synchronous operation in which the EIS
sends a callback call to the adapter and waits for the adapter to respond to the call.

Since the EIS expects a response from the adapter, event delivery to multiple
endpoints cannot be supported.

The following is an illustration of synchronous callback event processing.

EIS
Adapter

Callback
From EIS

Request

Endpoint
/

Application

ResponseResponse

One way callback events
One way callback events are asynchronous operations in which the EIS sends an
event to the adapter and then goes on with its processing, not waiting for the
adapter to send a response back.

The following is an illustration of asynchronous callback event processing.

EIS
AdapterCallback

From EIS
Message
Delivery

Endpoint
/

Application

ResponseResponse

90 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Using the IBM WebSphere adapter foundation classes for
inbound callback event processing
The adapter foundation classes can automatically track endpoints (the consumers
of events) for the adapter, control the event pick up and delivery of events, handle
recovery of events if the adapter unexpectedly terminates, and assure
once-and-only-once event delivery.

This allows developers to provide greater quality of service (QoS) in less time and
also ensure that behavior across adapters is consistent.

Although not required, it is a recommended practice that you use IBM WebSphere
adapter foundation classes (AFC) for adapters that have to provide callback event
notification.

Adapter foundation classes make the process of callback event delivery in an
assured manner easier for the developer creating the adapter, by providing the
event delivery API called the CallBackEventSender.

The following diagram depicts the usage of adapter foundation classes (common
component). The CallbackEventSender API is integral to the adapter foundation
classes.

EIS

Adapter

Callback
From EIS

Message
Delivery (with

optional return)

Client
system

ResponseResponse

C
o
m
m
o
n

C
o
m
p
o
n
e
n
t

C
a
l
l
b
a
c
k

Callback event sender
CallbackEventSender in com.ibm.j2ca.extension.eventmanagement.external package
provides four public methods.

CallbackEventSender in com.ibm.j2ca.extension.eventmanagement.external
package provides following four public methods.
v public void sendEventWithNoReturn(Record, InteractionSpec) throws

WBISendFailedException

v public Record sendEventWithReturn(Record, InteractionSpec) throws
WBISendFailedException

v public void sendEventWithNoReturn(GenericEvent, Record, InteractionSpec)
throws WBISendFailedException

v public Record sendEventWithReturn(GenericEvent, Record, InteractionSpec)
throws WBISendFailedException

These methods end up invoking different methods in the message-driven bean
(MDB). The MDB will implement several interfaces, including InboundListener,
and MessageListener.

WebSphere Adapter development overview 91

The sendWithReturn methods invoke onMessage on the InboundListener. This
method delivers the Record it received from the listener thread. Here the difference
is the onMessage method will be invoked on the InboundListener to deliver the
Record to the endpoint. The method would return ″Record″ as returned by
onMessage method.

The sendWithNoReturn method invokes onNotification on the InboundListener. The
sendEventWithReturn() method is not supported incase of multiple endpoint
factories configured, hence will throw an appropriate exception. Also, if there are
failures during the sending event when multiple endpoint factories configured, a
consolidated exception stack trace will be thrown with details like which
endpointfactory failed and for what reason.

Callback event sender constructors:

CallbackEventSender provides four different constructors to facilitate different
types of client invocation.

The following information describes the usage of the four constructors:
v CallbackEventSender(ArrayList, EventPersistence, XAResource,

ActivationSpecWithXid, LogUtils)
The complete constructor which takes an array of endpoint factories and
supports XA transaction with event persistence updates. If the input
ActivationSpecWithXid is valid and not null, event would be delivered by
calling target method on the inbound listener with ActivationSpecWithXid as
additional argument.

v CallbackEventSender(ArrayList, ActivationSpecWithXid, LogUtils)
Constructor used for event delivery without XA transaction and event
persistence support.

v CallbackEventSender(MessageEndpointFactory, EventPersistence, XAResource,
ActivationSpecWithXid, LogUtils)
This constructor does take the same arguments as (1) except that it takes one
MessageEndpointFactory instead of an array.

v CallbackEventSender(MessageEndpointFactory, ActivationSpecWithXid, LogUtils)
A slight variation for constructor (2) with just one MessageEndpointFactory
argument instead of an array.

Callback event processing for basic delivery
When the event is created at the EIS end, configured adapterListener gets notified
and it in turn instantiates CallbackEventSender. Here adapterListener decides
which method to invoke out of the four defined.

To implement callback mechanism, adapter must have an EndPointManager class.
The class needs to maintain the relationship between the activationSpec and
MessageEndpointFactory arguments. Here is a snippet of EndPointManager class
showing how the callback mechanism is implemented.
public class EndpointManager {

/**
* inner class which maintains pairs of mef and activationspec
*/

public static class EndpointPair {
public MessageEndpointFactory mef;

public ActivationSpec activationSpec;

92 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

public EndpointPair(MessageEndpointFactory mef, ActivationSpec activationSpec) {
this.mef = mef;
this.activationSpec = activationSpec;

}

public boolean equals(Object o) {
if (!(o instanceof EndpointPair)) {

return false;
}

EndpointPair other = (EndpointPair) o;
return other.mef.equals(this.mef) && other.activationSpec.equals(this.activationSpec);

}
}

// adds new endpointPair to the list
public void addEndpoint(MessageEndpointFactory mef, ActivationSpec activationSpec)
throws ResourceException {...}
}

The adapter listener gets all MessageEndpointFactories for the current
activationSpec and registers that with the CallbackEventSender instance.
EndpointManager epManager = ((ResourceAdapter)aSpec.getResourceAdapter()).getEndpointManager();
EndpointPair[] endpoints = epManager.getEndpoints(this.aSpec);

if (!isSynchronous && aSpec.getAssuredOnceDelivery().booleanValue())
{// XA Delivery
callbackEventSender = new CallbackEventSender(endPointList,

eventRecMngr.getEventPersistance(), XAres, aSpec,
logger.getLogUtils());

} else {// Non XA delivery
callbackEventSender = new CallbackEventSender(endPointList,
aSpec, logger.getLogUtils());

}

/* Refer to the Callback event sender constructors section for more
information.
Note: The adapter listener creates the worker threads to take care of calling
and getting responses from the callBackEventSender method. */

Once the program control gets into CallbackEventSender, it checks how many
EndpointFactories are configured for the current instance of adapter. If there is
more than one, then it delivers the event by creating endpoints for each of them
and invoking either onNotification or onMessage method on the endpoint with out
any XA transaction. Finally, it would call the release() method on the end point to
free the endpoint hence the application server can add it to endpoint pool. Finally
it would call release() method on the end point to free the endpoint hence the
application server can add it to endpoint pool.

Also it invokes beforeDelivery() and afterDelivery() methods on the endpoint as
defined by the JCA functional specification.

XA transaction will come into picture only when the adapter is configured with
ONE EndpointFactory. The following sequence diagram depicts the callback event
processing for basic delivery.

WebSphere Adapter development overview 93

Callback event processing for event delivery with XA transaction
To provide data integrity and to make sure events are not delivered more than
once, which would cause errors in the downstream system in the integration
scenario, the invention provides a mechanism to achieve once-and-only delivery
and the same is accomplished using XA transaction.

When assured delivery is required, the basic flow described in Callback event
processing for basic delivery becomes more complex. For more complex scenarios,
CallbackEventSender creates an instance of XA to bring the delivery under a new
transaction. The beforeDevliery() call to endpoint is the starting point of XA
transaction and it will last till afterDelivery(). If problems occur within this
transaction scope, a proper rollback mechanism will ensure data integrity is
maintained.

XA transaction will be active and supported only when the adapter is configured
with one EndpointFactory.

94 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

When the adapter signals that it has completed delivery, the transaction manager
will then call ″end″, ″prepare″, and ″commit″ to complete the requirements
outlined in the XA transaction protocol. When the ″prepare″ call is made, the XA
implementation will call ″setTransactionID″ on the eventPersistance
implementation; the eventPersistance implementation will store the transaction XID
in the event table. When the ″commit″ call is made, the XA implementation will
call ″updateEventStatus″ on the eventPersistance implementation to set the status
in the event table to ″COMMITED″. This is done for every event that was
retrieved. After all events have been delivered and successfully marked
″COMMITTED″.

When the event is created at the EIS end, configured adapterListener gets notified
and it in turn instantiates CallbackEventSender. Here adapterListener decides
which method to invoke out of the four defined. Lets consider the adapter calls
sendEventWithNoReturn() as shown in the sequence diagram.

Once the program control gets into CallbackEventSender, it checks how many
EndpointFactories are configured for the current instance of adapter. If there is
more than one, then it delivers the event by creating endpoints for each of them
and invoking either onNotification or onMessage method on the endpoint with out
any XA transaction. Finally it would call release() method on the end point to free
the endpoint hence the application server can add it to endpoint pool.

Also it invokes beforeDelivery() and afterDelivery() methods on the endpoint as
defined by the JCA functional specification.

XA transaction will come into picture only when the adapter is configured with
ONE EndpointFactory. The following sequence diagram depicts the callback event
processing for event delivery with XA transaction.

WebSphere Adapter development overview 95

Callback event processing for event recovery
When there is a failure in the event processing as part of system recovery, the
adapter is able to recover the unprocessed events by implementing the
once-one-only delivery mechanism.

During real time event processing if any component of the business integration
system fails then the adapter must process the events that are not completed, and
not process the events that are completed. This ensures that once-one-only delivery
mechanism is implemented when the system recovers from a failure.

96 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

When the container starts, it calls the getXAResources() method on the adapter to
get all the associated XA resources. The adapter then instantiates the appropriate
XA resource and returns it back to the container.

The JCA container now calls the recover() method on the returned
XAResourceImpl to get all the pending transactions from the configured event
persistence using the getPendingTransanctions() method. Depending on the
transaction state, the container calls either the rollback() or the commit() method on
the XAResourceImpl to update the status of the event to NEWEVENT or
PROCESSED on event persistence.

After connecting to the EIS, the adapter starts the adapterListener. The EIS then
triggers the adapterListener for any new event(s) and the adapterListener in turn
calls the CallbackEventSender with the same flow explained in the basic delivery
and delivery with XA transaction sequence diagrams. The following sequence
diagram depicts the callback event processing for event recovery.

Outbound support
Outbound support enables application components to execute operations on an EIS
and retrieve the results. Input data passed by the application component is
processed by the adapter to make changes or call functions on the underlying EIS.

Issuing outbound requests to a WebSphere adapter is no different than interacting
with any other JCA adapter as described in the JCA specification. The basic idea is
as follows:
1. A CCI client (for example, an EJB or other business process) looks up a

connection factory for the adapter using a JNDI service provided by the
application server.

2. The CCI client requests a resource adapter connection from that factory.
3. The CCI client then uses that connection to pass data to, and receive data from,

the underlying EIS.

The parts of this process that vary among adapters involve the data structures
exchanged and the operation-specific parameters passed.

The data structure for all WebSphere resource adapters for outbound requests is a
WebSphere business object wrapped in a WBIRecord implementation.

The parameters of the operation for any JCA adapter are defined through an
adapter-specific InteractionSpec instance; this class can contain 0..n properties
that specify details about the operation to perform. For WebSphere resource
adapters, a default WBIInteractionSpec class has one property: FunctionName.
Invoking components set the operation to perform in the FunctionName property.
(This is different from the verb that is defined in the actual business object). You
are strongly encouraged to use this InteractionSpec class. For example:
WBIConnection conn;
WBIRecord input;
WBIRecord output;
...
Interaction ix=conn.createInteraction();
WBIInteractionSpec ixSpec=new WBIInteractionSpec();
ixSpec.setFunctionName(WBIInteractionSpec.CREATE);
output = ix.execute(ixSpec, input);

WebSphere Adapter development overview 97

Application sign-on
The Adapter Foundation Classes can use either container-managed or
component-managed authentication or sign-on.

The process of connecting to a back-end application, such an EIS, usually requires
some type of authentication. In a JCA environment, application authentication is
known as sign-on. It can be performed in one of two ways:
v When using container-managed sign-on, the JCA container is responsible for

providing sign-on credentials. Sign-on credentials are passed from the JCA
container to the resource adapter as an instance of
javax.security.auth.Subject.

v When using component-Managed sign-on, the adapter client performs a
programmatic sign-on by passing explicit security information, such as username
and password, to the resource adapter using the CCI ConnectionSpec
implementation.

The res-auth element in the application component deployment descriptor specifies
the sign-on method. The only valid values for this element are Container or
Application.

Certain back-end systems support reauthentication. Reauthentication is the process
of changing the security context of an existing physical connection. If
reauthentication is supported by the back-end application, you can set the
reauthentication-support element of the resource adapter deployment descriptor to
true. Otherwise it must be set to false.

Although it does not define a specific authentication mechanism, the JCA
architecture supports two commonly used mechanisms: BasePassword
authentication and Kerberos authentication. Use the authentication-mechanism-type
element of the resource adapter deployment descriptor to specify which type is
supported.

To support authentication, resource adapters extend WBIManagedConnection as
follows:
1. Implement method WBIConnection(PasswordCredential pc, boolean

reauthenticate).
2. Extract and use the credentials provided in the PasswordCredential instance

that is passed; the Foundation Classes provide values from either the subject
for container-managed sign-on or a WBIConnectionSpec instance for
component-managed sign-on as appropriate.

3. (If you don’t support reauthentication, skip this step.) Check if the
reauthentication flag is true and reset the connection authentication
appropriately; this flag should be set to true only if the developer updates the
deployment descriptor.

4. Return a WBIConnection instance.
5. (Optionally) override isConnectionInfoOverwriteable(). This value is used to

determine whether the WBIConnectionRequestInfo already associated with the
ManagedConnection can be overwritten by another parameter that satisfies the
match condition. By default, this method returns false. If you can support
changing some connection parameters without destroying the connection (for
example, language), override and return true.

6. If you override isConnectionInfoOverwritable, consider overriding the boolean
matchConnectionRequestInfo (WBIConnectionRequestInfo)

98 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

7. The ConnectionManager may call getConnection(Subject,
ConnectionRequestInfo) on a ManagedConnection where the passed
ConnectionRequestInfo does not match the ConnectionRequestInfo already
associated with the ManagedConnection. The default implementation of this
method performs a property-for-property comparison between the two
ConnectionRequestInfo instances. It returns true if an exact match is found,
otherwise false. If the match criteria is something different, the resource
adapter developer may override this method with a suitable implementation.

8. Return true if the WBIConnectionRequestInfo is deemed a match with the
WBIConnectionRequestInfo already associated with this ManagedConnection;
otherwise return false.

Implementing outbound support
You enable outbound support by providing an EIS-specific implementation of a
resource adapter. This requires extending the Adapter Foundation Class
implementations of common client interfaces (Connection, Interaction, and
Metadata) and the ManagedConnection and ManagedConnectionFactory interfaces.

WBIManagedConnectionFactory:

A javax.resource.spi.ManagedConnectionFactory instance manages the creation and
configuration of physical connections to the underlying EIS. Specifically,
WBIManagedConnectionFactory implements theManagedConnectionFactory and
javax.resource.spi.ResourceAdapterAssiociation interfaces.

Configuration Properties

EIS-specific subclasses should specify boxed JavaBean-compliant accessor pairs
(e.g., setValue(Integer i) rather than setValue(int i)). The accessor pairs get
and set EIS-specific outbound configuration properties and logic. This is the means
by which property change events reach property change listeners with
corresponding updates to the ResourceAdapter (RA) deployment descriptor,
thereby making the JCA container aware of available properties. Properties defined
in this class are generally intended for use by the WBIManagedConnection
implementation when connecting to the EIS.

Note: Support for the ResourceAdapterAssociation interface, which cannot be used
in unmanaged environments, is optional for the JCA container. Accordingly, when
defining properties, assume that ManagedConnectionFactory will not have access
to the ResourceAdapter bean or any properties defined at the ResourceAdapter
level. While the ManagedConnectionFactory can check for and use properties at
the ResourceAdapter level as defaults when available, any properties defined at
the ResourceAdapter level and used by the ManagedConnectionFactory should be
optional, contain default values embedded in the ManagedConnectionFactory, or
exposed in the ManagedConnectionFactory so that users can specify values if the
ResourceAdapter bean is not available.

Subclass methods to implement

1. Object createConnectionFactory(ConnectionManager)

This method is called by the JCA container to enable the CCI clients to generate
handles to the physical EIS connection. EIS-specific subclasses should
implement this method to return an EIS-specific factory instance which is a
subclass of WBIManagedConnectionFactory.

WebSphere Adapter development overview 99

public Object createConnectionFactory(ConnectionManager connMgr) throws
ResourceException

{
return new TwineBallConnectionFactory(connMgr, this);
}

2. ManagedConnection createManagedConnection(Subject,
ConnectionRequestInfo)

This method is used by the JCA container to acquire a physical connection to
the EIS instance. Subclass implementation should return a EIS-specific
ManagedConnection instance which is a subclass of WBIManagedConnection.
public javax.resource.spi.ManagedConnection createManagedConnection(

javax.security.auth.Subject subject,
javax.resource.spi.ConnectionRequestInfo connReqInfo)
throws javax.resource.ResourceException

{
return new TwineBallManagedConnection(this, subject,

(WBIConnectionRequestInfo) connectionRequestInfo,
this.getResourceAdapter());

}

WBIManagedConnection:

WBIManagedconnection is an abstract class which implements
javax.resource.spi.ManagedConnection. A javax.resource.spi.ManagedConnection
instance represents a physical connection to the underlying EIS. The
WBIManagedConnection instance implements methods that enable the JCA
container to monitor its status and manage its life cycle.

Subclass methods to implement

1. public ManagedConnection(WBIManagedConnectionFactory mcf, Subject
subject, WBIConnectionRequestInfo)

This constructor should connect to the EIS instance and maintain a handle to
the connection as a property in the ManagedConnection. This method also
must call ″super″ to ensure that the credentials are present for later matching.

2. ManagedConnectionMetaData getMetaData()

Create and return a new instance of WBIManagedConnectionMetadata by
passing the EIS specific details such as product name, product version,
maximum connections and user name.
public ManagedConnectionMetaData getMetaData()

throws ResourceException
{

return new WBIManagedConnectionMetaData("TwineBall","0.2",200,userID);
}

3. Object getWBIConnection(PasswordCredential, boolean)

If reauthentication is supported, implementation should perform an EIS-specific
sign-on based on the credentials passed. Otherwise, it should return a CCI
handle to this managed connection.

public java.lang.Object getWBIConnection(javax.resource.spi.security.PasswordCredential arg0,
boolean reauthenticate)

throws javax.resource.ResourceException
{

return new TwineBallConnection(this);
}

4. destroy()

This method should close this connection to the EIS and release any resources.

100 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Best practices

v Each ManagedConnection instance should encapsulate at most one connection to
the EIS.

v Since there may be more than one Connection instance for each
ManagedConnection instance, resource adapter developers should implement
private contracts between their WBIManagedConnection subclass and their
WBIConnection/WBIInteractionsubclasses to ensure that access to the
underlying EIS connection or API is performed in a thread-safe manner.
If the EIS API does not support concurrent access by multiple connection
handles, concurrent access should not be denied. Instead, the implementation
should ensure that one and only one handle can access the EIS at a time
(through synchronization blocks, wait/notify patterns, and so on).

v At the start of any EIS-specific method implementation, developers should
always invoke super.checkValidity(); this method checks the state of the
ManagedConnection instance to ensure that it has not been closed, encountered
an error, and so on.

v If possible, always employ eager class initialization of the physical connection to
the EIS; do not assume that getConnection is the first method invoked. The JCA
container may need to access the XAResource, LocalTransaction or other features
of the managed connection for recovery, and so on, before any client even issues
a first request.

WBIConnectionFactory:

WBIConnectionFactory implements the ConnectionFactory interface. Subclasses
should implement the constructor only. As javax.resource.cci.ConnectionFactory,
this interface enables clients to request connections to an EIS.

Subclass methods to implement
public TwineBallConnectionFactory(ConnectionManager connMgr,

WBIManagedConnectionFactory mcf)
{

super(connMgr, mcf);
}

WBIConnection:

WBIConnection implements the Connection interface. An instance of this interface,
such as javax.resource.cci.Connection, represents a client connection handle to the
underlying EIS connection. A client obtains this connection by calling the
getConnection method of the ConnectionFactory instance.

Subclass methods to implement

1. Implement the constructor that takes a ManagedConnection and call the Super
class constructor that associates this connection handle with the
ManagedConnection.
public TwineBallConnection(WBIManagedConnection managedConnection)

throws ResourceException
{

super(managedConnection);
}

2. Create an EIS-specific interaction instance that enables clients to invoke
functions on the underlying EIS.

WebSphere Adapter development overview 101

public Interaction createInteraction() throws ResourceException
{

return new TwineBallInteraction(this);
}

Note: If you want to provide your own implementation of ConnectionMetadata,
you must override method WBIConnection#getMetadata.

javax.resource.cci.ConnectionSpec:

Clients use a javax.resource.cci.ConnectionSpec instance to pass request-specific
connection properties to the getConnection method of the ConnectionFactory.

To add EIS request-specific properties, the resource adapter should implement the
ConnectionSpec interface directly. The sample below extends
WBIConnectionRequestInfo to inherit the properties userName and password, and
then adds its own EIS-specific properties.
public class TwineBallConnectionSpec extends WBIConnectionRequestInfo implements

ConnectionSpec {
private boolean xa;
public TwineBallConnectionSpec(String userid, String password, boolean xa)
{

setUserid(userid);
setPassword(password);
this.xa = xa;

}
}

WBIInteraction:

A javax.resource.cci.Interaction instance enables client components to execute
EIS-specific operations. WBIInteraction implements an interaction interface to
provide implementations for noncritical methods. Subclasses implement the
execution interfaces.

Subclass methods to implement

Record execute(InteractionSpec ispec, Record inputRecord)

execute(InteractionSpec ispec, Record inRecord, Record outRecord)

The inRecord is the input record, and outRecord is the output record. The
difference between the two is that the output record is passed in, so the code in
interaction.execute updates that output record instead of creating a new record
to return.

Executes an EIS operation represented by the InteractionSpec and returns an
output Record. The following example makes use of the command patterns to
simplify processing.
public class TwineBallInteraction extends WBIInteraction {

private CommandManager commandManager;
private Interpreter interpreter;
private TwineBallConnection connection;
private TwineBallCommandFactory factory;

public TwineBallInteraction(WBIConnection connection) throws ResourceException {
super(connection);

this.connection = (TwineBallConnection) connection;
interpreter = new Interpreter(this.getLogUtils());

TwineBallResourceAdapter resourceAdapter =

102 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

this.connection.getResourceAdapter();
ObjectNaming objectNaming = new ObjectNaming(resourceAdapter);
factory = new TwineBallCommandFactory(objectNaming);

commandManager = new CommandManager(factory,
this.connection.getEISConnection(), this.getLogUtils());

}

public Record execute(InteractionSpec ispec, Record inRecord) throws
ResourceException {
WBIRecord wbiRecord = (WBIRecord) inRecord;

String functionName = ((WBIInteractionSpec) ispec).getFunctionName();
WBIInteractionSpec interactionSpec = (WBIInteractionSpec)ispec;
factory.setMaxRecords(interactionSpec.getMaxRecords());
Command topLevelCommand =
commandManager.produceCommands((WBIRecord) inRecord,

functionName);

topLevelCommand.getClass().getName());
DataObject returnDataObject = null;

try {
returnDataObject = interpreter.execute(topLevelCommand);

} catch (ResourceException e) {
log(e);
throw e;

}
WBIRecord outRecord = new WBIRecord();
if (functionName == WBIInteractionSpec.RETRIEVE_ALL_OP) {

outRecord.setDataObject(returnDataObject);
} else {

outRecord.setDataObject(returnDataObject.getContainer());
}
return outRecord;

}
}

WBIInteractionSpec:

A javax.resource.cci.InteractionSpec instance contains properties that identify the
operation to perform on the EIS.

WBIInterationSpec implements InteractionSpec and provides functionName and
maxRecords properties. Client components set these properties to provide
information to the resource adapter about the EIS operation to perform. For more
information, see the Javadocs for the Adapter Foundation Classes.

EIS specific resource adapter implementations need not extend this class unless
they have more EIS operation-specific properties to be added to the
InteractionSpec.

WBIConnectionRequestInfo:

A javax.resource.spi.ConnectionRequestInfo instance enables a resource adapter to
pass request-specific EIS data structure on a connection request
(ConnectionManager.allocateConnection). Client components can set these using
connection request properties. WBIConnectionRequestInfo implements
ConnectionRequestInfo. See the Adapter Foundation Classes Javadocs for more
information on this implementation.

Configuration properties

WBIConnectionRequestInfo provides userName and password properties. Using
connection properties, subclasses can add their own EIS-specific properties. These

WebSphere Adapter development overview 103

properties should not change the configuration of the EIS.

javax.resource.cci.ConnectionMetadata:

A javax.resource.cci.ConnectionMetadata instance provides information to the client
components about the underlying EIS of a resource adapter. Client components can
use the javax.resource.cci.Connection.getMetadata() interface to retrieve
connection-specific EIS metadata.

The WBIConnection class implements a subclass
ManagedConnectionMetadataWrapper whose constructor takes a
ManagedConnectionMetadata instance and implements ConnectionMetadata.
WBIConnection also implements the getMetadata() interface to retrieve the
ManagedConnectionMetadata from the ManagedConnection instance and then
constructs ConnectionMetadata. Hence EIS-specific resource adapter
implementations can use this foundation class implementation without having to
implement their own ConnectionMetadata instance.

Implementing transaction support
A transaction is an isolated interaction with the EIS. Transaction support allows
users to ensure that multiple operations on the EIS are performed as atomic units
and are not impacted by other simultaneously occurring operations from other EIS
clients.

Note: Transactions can be supported in an adapter only if the underlying EIS
supports transactions.

EIS application transactions typically rely on one of two commit protocols: the
one-phase or two-phase commit protocols. The one-phase commit protocol allows a
client to demarcate the beginning and end of transactional operations with a single
EIS application. The two-phase commit protocol, which is a superset of the
one-phase protocol, enables transactions to span multiple, heterogeneous EIS
systems. Accordingly, applications that support the one-phase commit protocol are
often said to support local transactions while those that support the two-phase
commit protocol are said to support global, or XA, transactions.

While an adapter can expose support for either or both protocols, the underlying
EIS must ultimately provide the support. By this token, you would not attempt to
implement XA support in your adapter if your underlying EIS application
inherently lacked transaction support.

Once you have determined that your EIS supports transactions, you must make
several modifications to your adapter to implement the support.
1. Update Your Adapter Deployment Descriptor Property TransactionSupport, as

described in the JCA 1.5 specification, supports three values: NoTransaction,
LocalTransaction, and XATransaction. You must specify the appropriate value
for the level of support you intend to provide. If your adapter supports XA,
specify XATransaction support but also implement the local transaction features
described below. (The JCA specification prescribes that any adapter supporting
XA should also support local transactions.)

2. Update your adapter-specific construction of WBIResourceAdapterMetadata to
reflect support for local transactions.
ResourceAdapterMetadata#supportsLocalTransactionDemarcation should return
true.

104 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

3. Override method WBIManagedConnection.getLocalTransaction() and, if XA
support is provided, method WBIManagedConnection.getXAResource().

Wrap either or both of the LocalTransaction or XAResource instances returned by
these methods with a WBILocalTransactionWrapper or
WBIXATransacxtionWrapper instance, respectively. These wrappers provide
extended diagnostics for troubleshooting and also help adapters determine
whether or not to autocommit requests. According to the JCA 1.5 specification, a
resource adapter must autocommit transactions when being used outside the
context of a transaction. To help the managed connection determine if it is
involved in a transaction, these wrappers act as thin delegation layers, monitoring
the sequence of calls to determine whether a transaction is active. At the beginning
of a transaction, the wrappers call method setEnlistedInATransaction(true) on the
WBIManagedConnection instance; upon commit or rollback, the wrappers set this
same property to false. By then checking the status of the transaction via method
isEnlistedInTransaction on the super class, a WBIResourceAdapter subclass can
quickly determine whether it should be automatically committing transactions or
not when modifying the EIS.

Note: When overriding methods, do not invoke the super implementations of
these methods since the Adapter Foundation Classes simply throw exceptions for
these methods.

Example of an XA-enabled adapter implementation of
WBIManagedConnection
public class FooManagedConnection extends WBIManagedConnection
{
// just get the XAResource from your EIS and return the wrapper

public XAResource getXAResource() {
XAResource eisXAResource = this.eisXAConnection.getXAResource();
XAResource wrapper = new WBIXATransactionWrapper(eisXAResource,this);
return wrapper;

}

// here's an example of a potentially transacted call on the EIS. Point
// is that adapter should always check whether it's enlisted in a
// container-managed transaction or whether it should handle transaction
// on its own
private void updateRecord(int id,int value) {
if(!this.isEnlistedInTransaction())
this.eisConnection.beginTransaction();

eisConnection.updateRecord(id,value);

if(!this.isEnlistedInTransaction())
this.eisConnection.commitTransaction();
}
}

Using command patterns
Command patterns simplify adapter development by providing generic logic for
dealing with hierarchical data structures.

Command patterns:

To enhance uniformity across adapters for outbound processing, support for
command patterns is provided by the CommandManager API in the Adapter
Foundation Classes.

WebSphere Adapter development overview 105

Adapters are responsible for creating, updating, retrieving, and deleting (CRUD)
records in the EIS system based on the structure described by the incoming
metadata and the content in the incoming cursor. The command pattern approach
is recommended for handling the generic processing of CRUD operations for
After-Image as well as Delta scenarios.

For example, if an incoming cursor represents an after-image update, the adapter
must take steps to update the EIS such that the corresponding object in the EIS
matches the structure and contents of the cursor request. To accomplish this, the
adapter retrieves the structure in the EIS system, then compares it to the incoming
cursor. The adapter then performs the operations necessary to make the EIS system
match the input. These operations are typically performed as the comparisons
occur. This makes adapter processing potentially quite complex. A command
pattern capability abstracts this functionality into generic logic, thereby saving
adapter developers time and effort.

The command pattern breaks down a hierarchical update into a hierarchy of small
sub-commands. These sub-commands are passed to an interpreter, which retrieves
and executes the code necessary to perform the sub-command on that particular
EIS system. This makes it possible for the adapter developer to deal with
operations on single-tier entities without having to walk the structure and
compare. This has the potential to simplify adapter construction greatly because
the comparison routines can be generic.

Advantages of the command pattern include:
v Code Reuse: The only code that the adapter developer would need to write

would be the EIS-specific operations: the comparator and interpreter code would
be common components.

v Performance consistency: Because adapters make use of common components,
developers can rigorously define the after-image update process, making a
variety of adapters work more consistently.

v Adapter ″phantom″ mode capability: If operations must be performed, the
interpreter can easily be turned off, with the contents of the command hierarchy
dumped to a file instead.

Command Manager:

The Command Manager is a utility designed to reduce complexity when dealing
with delta and snapshot hierarchical objects. You use the Command Manager to
consolidate the code necessary to deal with these objects, breaking down the
structure into nodes, then creating commands that can deal with each node.

Snapshot objects

Consider the simple case of a snapshot Create operation involving a structure that
you want to create inside the EIS. The Command Manager creates a command
structure composed of Create commands that is based on the incoming structure.

This command structure will then be executed by the interpreter. As the interpreter
executes each individual command, the assigned objects are created.

With a snapshot Update, the Command Manager must retrieve the object from the
EIS, compare it to the incoming structure and create a command structure that can
change the data in the EIS to match the incoming structure.

106 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Consider the following scenario: Child B1 is in the EIS, but is not in the incoming
structure. Child B1, then, must be deleted. The Command Manager will execute a
Retrieve command to build the structure as it appears in the EIS, then compare
this structure to the incoming object tree. The comparison finds that child B1 is
deleted. Accordingly, the resulting command structure has a Delete command in
that position.

Command Manager Retrieve scenario

Note: This behavior is dependant on the ability of the Command Manager to
determine child keys. Be sure to mark the child key fields in the business object
definition using the appropriate Application Specific Information.

WebSphere Adapter development overview 107

Command Manager Delete

Delta objects

Delta processing is only relevant for service data objects (SDO).

The Command Manager functions in a similar way when processing delta objects.
Instead of retrieving and comparing, the command manager reads the change
summary for the intended changes. Note that since a child object might be
changed without any change to the parent object, and since many EIS systems
require a parent pointer in order to process children, the command manager
generates NO_OPERATION commands for the untouched parents of changed child
objects.

108 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Suppose, as in the example below, that child B1 is created and is part of the change
summary. The resulting command structure will contain a Create command for
child B1, and will have NO-OPERATION parents linking it back to the top level
parent.

WebSphere Adapter development overview 109

Command Manager Create

When it processes this structure, the interpreter will execute the No-op commands
as well as the Create command. In general, the no-op commands should not
modify data in the EIS system.

After-image processing:

The Command Manager, based on the CommandManager API, implements the
command pattern capability. This utility simplifies the work of comparing before-
and after-image data.

The Command Manager is based on the CommandManager API of the Adapter
Foundation Classes. For after-image processing, the Command Manager compares
the cursor record structure inside the EIS (the before-image) with that of the
incoming after-image cursor. Based on the comparison, the Command Manager
constructs a hierarchical representation of commands that must be executed to
make the before-image object match that of the after-image. The command
hierarchy is passed to an interpreter, which executes each command in the order of
execution required for the declared operation. The order of execution for Create
and Update is top-to-bottom; for Delete the order is bottom-to-top.

As shown in the following figure, the Command Manager relieves you of the task
of developing and testing comparison routines.

110 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Command Manager simplifies before and after comparisons

As shown in the upper portion of the figure, the input to the Command Manager
is a before image and an after image. The Command Manager creates a top-level
command representing the operation for the top-level incoming cursor. As
processing continues, sub-commands are added at the child object level and so on
to the top-level incoming cursor, as shown in the lower portion of the figure.

The Command Manager provides a first class support for Create, Retrieve, Update
and Delete operations using static variables defined in the WBIInteractionSpec
class:

WBIInteractionSpec.CREATE
WBIInteractionSpec.UPDATE
WBIInteractionSpec.DELETE
WBIInteractionSpec.RETRIEVE

You can use the Command Manager for other supported operations, too. It creates
a command pattern hierarchy with the same operation at all the levels in the in the
cursor hierarchy. Specifically, you would configure the CommandFactory for Object
type operations with isOOType() returning true. If isOOType() returns false, the
Command Manager would create only one command in the command hierarchy
for the top-level cursor.

For other non-CRUD operations, it may not make sense to use the command
pattern capability. For example, if the operation supported is XXX, and if XXX
simply executes a function call at the top-level cursor only, there is no need to
apply the XXX operation to all child cursors.

As it begins to process children of the root object, the Command Manager iterates
through the properties for the top-level cursor. For each property which is of type
containment, the Command Manager attempts to construct a hashset of the key
values for each child. Every entity, root or child, must have a primary key, which is
how the Command Manager distinguishes records.

The Command Manager constructs two sets, A and B. Set A will be the set of
primary keys in the before-image child container. Set B is the set of primary keys
in the after-image container.
v The set A-B contains extra children. These will be Deleted.
v The set B-A contains missing children. These will be Created.
v The set A intersect B contains children to be updated. These will be updated.

For each record in each set for ″extra″ and ″missing″ children, the Command
Manager will recursively follow the child record and all its children, for each entity
adding to the top level command the child command representing the child cursor
and its corresponding operation.

For children to be updated, the before- and after-image data are passed back to the
Command Manager. This allows the Command Manager to recursively process any
children that those children might contain. When the Command Manager reaches
the bottom level of both structures, the command structure is complete, and the
Command Manager returns the top level command.

Delta processing:

WebSphere Adapter development overview 111

The Command Manager processes delta structures in a manner analogous to that
of after-image data. The difference is that, for delta objects, comparative data is
extracted from service data object change summaries.

When the input service data object (SDO) represents an Update operation with a
delta structure, the Command Manager will look up the BOChangeSummary to
find the respective operations on each child SDO. For example, the following
figure shows a delta SDO input with underlined text representing the operation
derived from the change summary.

Command Manager extracts change summaries

Command Manager interpreter logic:

An order attribute establishes the sequence by which the interpreter executes
commands.

The interpreter is given a top level command to execute. Each command has an
order associated with it that is set when the command is created. The order
attribute of each command may be BEFORE_PARENT or AFTER_PARENT. If the order
attribute of a child command is BEFORE_PARENT, that command will execute before
the parent; if the order attribute of a child is AFTER_PARENT, that command will
execute after the parent.
v If an object is marked as created and then as deleted in the ChangeSummary, the

adapter will not take any action.
v If an object is marked as created and then updated in the ChangeSummary, the

adapter will perform a Create.
v If an object is marked as updated and then deleted in the ChangeSummary, the

adapter will perform an Update.

Implementing Command Manager:

You implement commands for each type of operation supported by the adapter, a
command factory to support instances of each operation, and calls to the
Command Manager.

112 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

You will need to implement the following:
1. Command implementations for each command type (″Retrieve″, ″RetrieveAll″,

″Create″, ″Update″, ″Delete″, and ″NoOperation″).
2. A command factory implementation that will create instances of these

EIS-specific commands.
3. An implementation of Interaction.execute() that calls the Command Manager.

Command implementations:

You use an execute() method to implement commands. Extending an abstract base
command with operation-specific commands supports the coding benefits of
command patterns.

execute() is the method that implements each command. This method should
perform the appropriate operation for the associated node. If a Create command is
associated with child B1, for example, execute() is the method that calls the EIS
API to create that child.
public void execute(InputCursor obj, Type metadata) throws ResourceException
{EisRepresentation eis = EisAPI.insert(toEisFormat(obj, metadata));
}

Note: Be careful with deleted children. The SDO getContainer() does not return
the original parent in a delta operation. Use the getParentDataObject() method,
available in the command object, to alleviate this problem.

The Retrieve and RetrieveAll commands must create the entire object structure and
return it because the input object is unaware of child objects present in the EIS.

It is a common pattern to have an abstract base command for your EIS, and then
have the operation-specific commands extend that. This way, if all your commands
need similar data, you can reduce your coding effort.

Note: Note: The WebSphere Adapter Toolkit will not generate the execute()
methods for individual commands. You will want to override the base command
execute method to put in the logic you want.

Command factory implementations:

The command factory creates operation-specific command instances and establishes
when the instance is executed.

Given an operation name and metadata, the command factory is responsible for
creating command instances. The command factory must also set the execution
order that specifies when a command should be executed in relation to its parent.
This value can be either BEFORE_PARENT, or AFTER_PARENT.

The interface you must implement is as follows:
public CommandForCursor createCommand(String nodeLevelOperation) throws ResourceException;

The code to implement a command factory will resemble the following (where
TwineBall is the name of the EIS).

public CommandForCursor createCommand(String functionName, Type metadata) throws ResourceException {

TwineBallBaseCommand command = null;

try {

WebSphere Adapter development overview 113

if (functionName.equals(NodeLevelOperations.CREATE_NODE)) {
command = new TwineBallCreateCommand();
} else if (functionName.equals(NodeLevelOperations.DELETE_NODE)) {
command = new TwineBallDeleteCommand();
} else if (functionName.equals(NodeLevelOperations.UPDATE_NODE)) {
command = new TwineBallUpdateCommand();
} else if (functionName.equals(NodeLevelOperations.RETRIEVE_STRUCTURE)) {
command = new TwineBallRetrieveCommand();
} else if (functionName.equals(NodeLevelOperations.RETRIEVE_ALL)) {
command = new TwineBallRetrieveAllCommand();
} else {
command = new TwineBallBaseCommand();
}
command.setObjectSerializer(objectSerializer);
command.setObjectNaming(objectNaming);
command.setMaxRecords(maxRecords);
command.setMetadata(metadata);

if (functionName == NodeLevelOperations.DELETE_NODE) {
command.setExecutionOrder(CommandForCursor.BEFORE_PARENT);
} else {
command.setExecutionOrder(CommandForCursor.AFTER_PARENT);
}

}catch (Exception e) {
throw new ResourceException(e);
}
return command;
}

Implementing Interaction.execute():

To enable the command pattern capability, you implement a class from the
InteractionSpec with a call to the Command Manager. The InteractionSpec is part
of the JCA CCI interface.

The interaction class is part of the JCA CCI interface and processes records as
input and output. This is the API that is exposed for manipulating data in
outbound operations:
public Record execute(InteractionSpec ispec, Record inRecord)

throws ResourceException;

You want to call the Command Manager to produce the command structure, then
the interpreter to execute each command in the structure. A simplified version of
the resulting interaction code will resemble the following:

public Record execute(InteractionSpec ispec, Record inRecord) throws ResourceException {
WBIStructuredRecord wbiRecord = (WBIStructuredRecord) inRecord;
String functionName = ((WBIInteractionSpec) ispec).getFunctionName();
CommandForCursor topLevelCommand = commandManagerForCursor.produceCommands(wbiRecord, functionName);
interpreter.execute(topLevelCommand);
WBIStructuredRecord outRecord = new WBIStructuredRecord();
outRecord.setOperationName(functionName);
outRecord.setTwineBallConnection(connection.getEISConnection());
outRecord.setEISRepresentation(topLevelCommand.getEisRepresentation());
return outRecord;
}

Notice that you need not ″walk″ the incoming object structure, or the command
structure– the command manager and interpreter perform this function.

114 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Data and metadata
Adapter Foundation Classes (AFC) implement DESPI APIs and support two data
formats, service data objects (SDO) and JavaBeans.

The data format-specific implementations are provided in the AFC and are
abstracted from the adapters which use the DESPI APIs to process data in a
format-independent way.

XSD and JavaBean structure relationship to DESPI

SDO Structure:

JavaBeanRecord Structure:

The JavaBeanRecord data structure is derived from the XML Schema defining the
SDO. Adapter foundation classes provide an implementation of RecordGenerator
which generates JavaBeanRecords for a given SDO/XML Schema.

The RecordGenerator class is used by the adapter enterprise metadata to generate
the required artifacts for Java Bean Record data format. See Enterprise metadata
implementation details on how to update the adapter enterprise metadata (EMD)
implementation to use the RecordGenerator class.

Type mappings: Bean properties map to the attributes of a given complex type. The
types of the simple attributes are derived from the XML built-in data types defined
in the input schema for each subelement of the complex type. The sub-elements
containing n-cardinality child objects are always defined as an array of the child
type while single cardinality sub-elements are represented as a JavaBean property
with the type of the subelement.

The following is a table showing the mapping between the built-in XML Schema
Definition (XSD) types and bean properties generated by the RecordGenerator
implementation in the AFC.

Table 2. Mapping between built-in XSD schema and JavaBean properties

Header Header

Boolean boolean

String String

Int int

Integer Integer

Decimal BigDecimal

Double double

Float float

Long long

Short short

hexBinary byte[] (byte array)

Byte byte

dateTime Calendar

Date Calendar

Time Calendar

WebSphere Adapter development overview 115

Table 2. Mapping between built-in XSD schema and JavaBean properties (continued)

Header Header

anySimpleType String

Any String

There are cases in which a simple XML data type must be mapped to the
corresponding Java wrapper class for the Java primitive type:
v an element declaration with the nillable attribute set to True

v an element declaration with the minOccurs attribute set to 0 (zero) and the
maxOccurs attribute set to 1 (one) or absent

v an attribute declaration with the use attribute set to optional or absent and
carrying neither the default nor the fixed attribute

The following shows examples of each:
v <xsd:element name="code" type="xsd:int" nillable="true"/>
v <xsd:element name="code2" type="xsd:int" minOccurs=""></xsd:element>
v <xsd:element name="">

<xsd:complexType>
<xsd:sequence/>
<xsd:attribute name="">
</xsd:attribute></xsd:complexType>
</xsd:element>

The element/attribute declarations for code, code2, code3 above are all mapped to
the java.lang.Integer type.

JavaBean Metadata ASI format: The metadata is derived mostly from the structure of
the bean. Other metadata, such as containedType and maxLength are not normal
parts of a JavaBean structure, so they must be part of the annotation maps.

Annotation maps:

Annotations are not normally part of a JavaBean structure, so JavaBeanRecords
must contain annotations in a specific format to be usable by the metadata API.

The JavaBeanRecord must implement the BeanMetadata interface.
public interface BeanMetadata {
public Map getObjectAnnotations();
public Map getPropertyAnnotations();
public Set getSetAttributes();
}

Each property (if it needs metadata) will have its own Map, which will be stored
in the propertyAnnotations map, using the property name as key.

Reserved keys in the propertyAnnotations map:
v ContainedType

The class of the object that this property contains
v PrimaryKey:

Whether this property is key
v DefaultValue:

The default value
v MaxLength:

The maximum length of this property.

116 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

The notion of whether or not a property is set is critical to processing null values
or values that have not been set in the adapter. If a property has been explicitly set
to null, the adapter must be able to detect this and set the associated property to
null in the EIS.

If the property has not been set, it might still have a null value, but the adapter
will ignore the value and not set it in the EIS system.

A list of bean properties for which the setter is called is returned when
getSetAttributes() is called. This will enable the DESPI implementation to
determine if a particular attribute has been set.

Property order:

The notion of property order is critical, because the adapter may need to iterate
over the properties in the same order that they appear in the EIS system.

Since JavaBean APIs cannot detect the order present in the class file, there must be
a string array called ″propertyOrder″ in the bean, containing the names of all
properties in the desired order.
public static final String[] propertyOrder = {"property1","property2"};

SDO to JavaBeanRecord ASI Mappings: Annotations from the SDO/XML schema are
read and stored in a Map structure in the bean. Here is a description of how the
RecordGenerator would populate annotation maps. For each element in the
metadata annotation, the generator would create an entry in the Map with the
name of the element as the key.
v If the element is a simple type with single cardinality then the value of this

element is added to the Map.
v If the element is a simple type with n-cardinality, then a List is generated

containing one or more values of this element.
The List is then added to the annotation Map.

v If the element is a complex type with single cardinality then a Map is created
containing the mappings for elements of this child complex type.
The Map is then added to the annotation Map.

v If the element is a complex type of multiple cardinality then a List is created.
The List would contain one or more Map entries where each Map contains the
mapping for the elements of the child complex type.

Here is an example of how the object level metadata annotation would look like in
an SDO schema:

<annotation>
<appinfo source="http://www.ibm.com/xmlns/prod/websphere/j2ca/sap/metadata">
<sapasi:sapBAPIBusinessObjectTypeMetadata xmlns:sapasi="http://www.ibm.com/xmlns/prod/websphere/j2ca/sap/metadata">
<sapasi:Type>BAPI</sapasi:Type>
<sapasi:Operation>
<sapasi:MethodName>BAPI_CUSTOMER_CREATEFROMDATA1</sapasi:MethodName>
<sapasi:Name>Create</sapasi:Name>
</sapasi:Operation>
<sapasi:Operation>
<sapasi:MethodName>BAPI_CUSTOMER_CHANGEFROMDATA1</sapasi:MethodName>
<sapasi:Name>Updatewithdelete</sapasi:Name>
</sapasi:Operation>
</sapasi:sapBAPIBusinessObjectTypeMetadata>
</appinfo>
</annotation>

WebSphere Adapter development overview 117

As defined in the sapBAPIBusinessObjectTypeMetadata schema ″Operation″ is an
n-cardinality complex type. The ″MethodName″ element of the operation type is a
simple type with multiple cardinality:

<complexType name="sapBAPIBusinessObjectTypeMetadata">
<sequence>
<element name="Type" type="string"/>

<element name="Operation" type="sapasi:sapBAPIOperationTypeMetadata" minOccurs="0" maxOccurs="unbounded"/>
<element name="ErrorConfiguration" type="sapasi:sapRFCErrorConfigurationMetadata" minOccurs="0" maxOccurs="1"/>
</sequence>
</complexType>

<complexType name="sapBAPIOperationTypeMetadata">
<sequence maxOccurs="1" minOccurs="0">
<element name="Name" type="string" minOccurs="0" maxOccurs="1"/>

<element name="MethodName" minOccurs="0" maxOccurs="unbounded" type="string"/>
</sequence>
</complexType>
<complexType name="sapRFCErrorConfigurationMetadata">
<sequence maxOccurs="1" minOccurs="0">

<element name="ErrorParameter" type="string" minOccurs="0" maxOccurs="1"/>
<element name="ErrorCode" minOccurs="0" maxOccurs="1" type="string"/>
<element name="ErrorDetail" minOccurs="0" maxOccurs="1" type="string"/>
</sequence>
</complexType>

For the above metadata, the object level annotations map generated for the
JavaBeanRecord would look like the following:
public static LinkedHashMap objectAnnotations = new LinkedHashMap();

static {
objectAnnotations.put("Type","BAPI");

LinkedList operationAnnotation = new LinkedList();

LinkedList methodnameList;
LinkedHashMap createOperationMap = new LinkedHashMap();

createOperationMap.put("Name", "Create");
methodnameList = new LinkedList();
methodnameList.add("wbiCustomerCreate)";
createOperationMap.put("MethodName", methodnameList);
operationAnnotation.add(createOperationMap);

LinkedHashMap updateOperationMap = new LinkedHashMap();
updateOperationMap.put("Name", "Update");
methodnameList = new LinkedList();
methodnameList.add("wbiCustomerUpdate)";
updateOperationMap.put("MethodName", methodnameList);
operationAnnotation.add(updateOperationMap);

objectAnnotations.put("Operation",operationAnnotation);
}

ObjectAnnotations:Object level metadata in the annotations is read and stored in the
’objectAnnotations’ Map. Following diagram shows the structure of
objectAnnotations.

118 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

objectAnnotationsMap

ObjectName WBI_CUSTOMER_CI

Operation operationsList

createOperationsMap

Name Create

MethodName MethodNameList

operationList

updateOperationMap

createOperationMap

methodNameList

wbiCustomerCreate

The Metadata API

Advanced implementations of adapters are metadata-driven. This implies that the
adapter is not hard coded for each object type in the system, but rather has a form
of discovery in which a representation of the object (the metadata) in the EIS is
constructed at build time, then at runtime the adapter uses this metadata, along
with the data, to process the object. Metadata can be in a preexisting format, such
as a standardized schema. Standard metadata includes such information as
property name, property type, maximum length, cardinality, and anything else that
can be described in a standard schema. Metadata may also be in a format decided
by the adapter. This form of metadata is called ″Application Specific Information″,
or ASI. ASI can occur in three places.
v Object level metadata

This includes the information about what type is being processed
v Operation level metadata

This is context-specific object metadata, that is valid for the operation being
processed at this time.

v Property level metadata
This is information about the one property in the EIS schema. It may contain
such information as the column name as it occurs in the EIS, which may be
different than the property name in the object.

In order for the adapters to handle multiple representations of metadata;
specifically SDO and JavaBean, the Foundation classes provide an API for the
adapters and abstracts the metadata representation. The intention of this Metadata
API is to present both structural and application-specific metadata to the adapter,
so the adapter is insulated from the metadata format. For example, a JavaBean or
an SDO may be used as metadata, but the adapter can use the same metadata APIs
to walk over the structure and to extract the desired information from it.

Adapter implementations should use the following interfaces when retrieving
metadata. Adapters should never cast to an implementation of these interfaces.

WebSphere Adapter development overview 119

These interfaces may contain more helper methods than are listed here, please see
the Javadoc for the additional helpers.

Factory classes

Class TypeFactory:

TypeFactory creates an instance of an implementation of Type. The TypeFactory is
also capable of detecting whether SDO version 2, SDO version 1, or neither is
present in the classpath, allowing it to make decisions about what implementation
to use.
v Type getType(Object object)

Gets a Type object from existing metadata.
v Type getType(String namespace, String name)

Gets a Type object from a namespace, name combination. For a JavaBeans
metadata implementation, the namespace is the package and the name is the
class name.

Class SDOFactory:

SDOFactory creates an SDO instance, the implementation of which will depend on
what version of SDO is in the classpath.
v DataObject createDataObject(String namespace, String name)

Creates the data object based on the namespace and name.
v DataObject createDataObject(Type type)

Creates the data object based on an instance of Type

Interfaces

Interface Type:

The interface type allows access to object-level metadata, including properties,
object-level annotations and key properties.

String getName()
Retuns the name of the type.

Iterator getPropertyIterator()
Returns an iterator to allow iteraton over the properties in this type.

List getProperties()
Returns a list of properties for this type.

120 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Property getProperty(String propertyName)
Returns the property object for this property name.

Map getAnnotations(String source)
Returns the object-level annotations for this type. You must pass
in the "source" of the annotations, which corresponds to the "source"
attribute of the "appinfo" tag of the XML Schema representing this
object. Annotations will be returned as a Map, and this Map may contain
other maps if the annotation structure is nested.

Map getAnnotationsForOperation(String source, String operation)
Often operation-specific object metadata is needed. E.g for
Create operation there is a specific sequence of APIs that have to
be executed, this set could be different for Update and Delete operations.
This method returns the metadata for a given operation name as a Map of
name - value pairs.

List getKeyProperties(String source)
Returns the list of key properties in this type.

Interface Type:

Type getContainingType()
Returns the type containing this property.

Object getDefault()
Returns the default value for this property.

String getName()
Returns the name of this property.

Class getPropertyClass()
Returns the Class represented by this property. For example, if the
property is of String type, this method will return String.class.

WebSphere Adapter development overview 121

boolean isContainment()
Returns whether or not the property contains a Type
(complex object).

boolean isMany()
Returns whether or not the property contains a List or Array.

int getMaxLength()
Returns the max length of the property.

Map getAnnotations(String source)
Returns the annotations for this property.

boolean isKey(String source)
Returns true if this property is a key, and false if not.

Type getType()
If the property is containment, this method will return
the contained type.

Enterprise metadata implementation

Selection of artifact types

WebSphere adapters can run against multiple brokers (server runtimes).

Each broker might require different types of artifacts. The adapter foundation
classes can generate artifacts in support of multiple brokers.

The following artifact types are supported by adapter foundation classes:
1. Data Bindings

Data Binding classes generated by enterprise metadata discovery to support
WebSphere Process Server runtime.

2. Generated Records
JavaBean records generated from SDO to support clients that work with
JavaBeans.

3. Generic Records
Other DESPI implementations.

The table below provides a matrix for artifact type and their supported server
runtimes.

Table 3. Artifact types and supported runtimes

Runtimes

Artifact types WebSphere Process
Server

WebSphere
Application Server

Other DESPI
implementations

DataBindings X

GeneratedRecords X

GenericRecords X

While running the external service discovery wizard, adapter users can choose
which artifact to generate depending on their runtime environment. Users can
select more than one artifact.

122 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Support for GeneratedRecords artifact type: WebSphere adapters may support
JavaBeanRecord data representation along with SDO 1.0 and SDO 2.0 data objects.
As part of the support for JavaBean data representation, the adapter foundation
classes provides a JavaBeans record generator class that can generate
DataBindingDescriptions for the object types discovered and selected through the
enterprise metadata discovery (EMD) process.

Each adapter enterprise metadata discovery provides a list of artifact types it
supports, allowing the user to select an artifact type that is appropriate for their
environment. For example, to enable the adapters on runtimes where SDO
implementations are not available, users will run the ESD wizards to generate the
adapter artifacts for GeneratedRecords type. When the user selects a Generated
Records artifact type in the enterprise metadata discovery process, the external
service discovery wizard will look for a databinding generator class name on the
EMD DataDescription and invokes that class to generate the JavaBeans records.

All adapter enterprise metadata discovery that support the generated records
artifact type would need to set the data binding generator class name (on the
DataDescription) to the generator implementation provided in the AFC. Here is
code snippet showing how the record generator is set in the service description
implementation of an adapter EMD.

WBISingleValuedPropertyImpl property = (WBISingleValuedPropertyImpl) selectionProperties.getProperty
(EMDConstants.ARTIFACTS_SUPPORTED);
WBIMetadataConnectionImpl.getToolContext().getProgressMonitor().setNote("Business object definitions created");

String namespace = getNameSpace();
//Change made for making BG Optional
if (property.getValue().equals(EMDConstants.DATA_BINDINGS)) {
dataDescription.setName(WBIDataDescriptionImpl.convertNamespaceToUri(namespace + "/"
+ metadataObj.getBOName().toLowerCase() + "bg"), metadataObj.getBOName() + "BG");

dataDescription.setDataBindingGeneratorClassName
("com.ibm.j2ca.sample.twineball.emd.runtime.TwineBallDataBindingGenerator");
dataDescription.setGenericDataBindingClassName(null);
}
else if (property.getValue().equals(EMDConstants.GENERATED_RECORDS)) {
dataDescription.setName(WBIDataDescriptionImpl.convertNamespaceToUri(namespace + "/"
+ metadataObj.getBOName().toLowerCase()), metadataObj.getBOName());
dataDescription.setDataBindingGeneratorClassName
("com.ibm.j2ca.extension.dataexchange.bean.generator.RecordGenerator");

dataDescription.setGenericDataBindingClassName(null);
} else {

//Generic Record Scenario
dataDescription.setName(WBIDataDescriptionImpl.convertNamespaceToUri(namespace + "/"
+ metadataObj.getBOName().toLowerCase()), metadataObj.getBOName());

dataDescription.setGenericDataBindingClassName
("com.ibm.j2ca.sample.twineball.TwineBallStructuredRecord");

New property types supported from WebSphere Adapter Toolkit V6.1:

TableProperty: A property representing a table with rows and columns. Each
column is represented by the PropertyDescriptor instance and each cell
corresponding to a given row and column is represented by a
SingleValuedProperty implementation.

TreeProperty: A property representing a tree of selectable nodes. Each node is
represented by a NodeProperty implementation which can be selected, highlighted
and can have configuration properties represented by a PropertyGroup instance.

Enterprise Metadata Discovery general interfaces and
implementation for application adapters

Enterprise metadata discovery is a discovery service, or a component within an
adapter that enables the generation of business object definitions and other artifacts
required by service component architecture.

WebSphere Adapter development overview 123

The enterprise metadata discovery component is analogous to the Object Discovery
Agent of WebSphere Business Integration Adapters. In addition to generating
business object definitions, however, the enterprise metadata discovery also
generates service component architecture artifacts such as an Import/Export file
and WSDL. An explicit goal of enterprise metadata discovery is to enable existing
JCA resource adapter extensions to provide metadata discovery and import in a
simple, straightforward way.

Using adapters that allow for metadata discovery and import, you can create and
edit services with the following capabilities, where the operation style is supported
by the underlying adapter:
v Integration-framework-initiated operations to retrieve data from or modify data

in the EIS.
v EIS-initiated operations, where the request originates within the EIS.

Note: This type of operation is used for retrieving data from, or modifying data
in, the integration framework.

Types of enterprise metadata
The enterprise metadata discovery service is responsible for exposing two
categories of metadata: EIS metadata and service metadata

EIS metadata:

EIS metadata describes the system capabilities and business object structures
employed by the EIS. The enterprise metadata discovery service acquires EIS
metadata from the communication configuration information that characterizes
system function and object interactions.

System Capabilities

At the system level the metadata describes the types of information managed by
the EIS system. This is represented as a collection of functions on the EIS client
interface or as a set of business objects that are accessed from the EIS client
interface. In addition to function and object descriptions, EIS metadata includes a
description of the styles of interaction that can occur with functions and objects in
the EIS metadata model. There are two interaction styles:
v Inbound - EIS-initiated
v Outbound - Client-initiated

There can be two kinds of interaction for each interaction style.
v Request-Response - This kind of interaction takes a request and returns a

response. Outbound interactions are of this type.
v One-way - A one-way interaction takes a request, but does not return a response.

Inbound interaction style is one-way

The discovery service defines whether an interaction style is inbound versus
outbound. The distinction between one-way and request-response is made by the
method descriptions generated for the service. The request-response mode would
have both input and output specified for a method description whereas input
arguments only would be specified for one-way. The metadata generated by the
discovery service must comply with the restrictions on interaction mode mentioned
above: for Outbound the metadata must support Request/Response and for
Inbound, one-way.

124 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Business Object Structures

These are the business objects used by JCA adapters. They describe the structure
and content of arguments to functions on the EIS client interface or the business
objects accessed through the EIS client interface.

Communication Configuration

The communications configuration is represented by a collection of properties also
referred to as PropertyGroup. The properties include properties required for both
inbound and outbound communication. In some cases, there may be more than
one set of properties required. These might be required to describe different types
of outbound connections that for design time and runtime or for inbound
connection configuration.

The discovery service is not limited to accessing metadata from the EIS. If the
metadata is stored in a separate repository, the discovery service can mine the
metadata from there. This allows the discovery service to combine all metadata at
its disposal to provide a meaningful user experience to the tool user.

Service metadata:

Service metadata is generated by the adapter as business objects are imported into
a service description.

Service metadata includes the service name and the adapter and managed
connection factory properties that describe the configuration for an outbound
connection to the EIS (outbound case). For an inbound connection to the EIS
(inbound case), service metadata might include resource adapter and Activation
Specification configuration properties. Service metadata also includes method-level
metadata such as the method name, data description for the input and output, and
either InteractionSpec properties (outbound case) or the EIS function name
(inbound case).

For most cases, service metadata representing outbound and inbound connections
is the same as the EIS metadata for communication configuration. For other cases,
depending on specific implementation, the service metadata might be distinctly
different. For example, the discovery service might find objects from a different
interface, such as a separate repository, or might use a different type of a
connection for discovery.

WebSphere Adapter development overview 125

Service metadata

Enterprise metadata discovery architecture
The enterprise metadata discovery tooling includes runtime, discovery, and service
generation interfaces and metadata edit capabilities.

Enterprise metadata discovery architecture

Note: The solid arrows represent the enterprise metadata discovery
implementation in the above diagram.

The components of the enterprise metadata discovery implementation, described
below, are:
v Runtime

126 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

These interfaces extend the CCI interfaces defined in the JCA specification to
support invocation of services discovered with enterprise metadata discovery.
These interface implementations are provided by the resource adapter provider
or a third party discovery service provider. These are the data binding interfaces
that are used to integrate with service data objects.

v Discovery

These interfaces constitute the bulk of the contracts defined in this specification.
They define the following contracts:
– Discovery - These interfaces allow the tool to browse EIS metadata.
– Connections - These interfaces allow the tool to discover all the available

connections, create connections, edit connections and persist the connections
for future use.

– Mutable metadata - These interfaces allow the tool to edit the EIS metadata
that is being browsed.

v Service Generation

These interfaces allow the tool to create or edit service descriptions that define
the service a user has selected. These service descriptions are used to generate
service implementations that are deployable in application servers and used as
part of a service oriented architecture. These interfaces also provide support for
editing application-specific information schemas.
These interface implementations are provided by the resource adapter provider
or a third party discovery service provider.

v Metadata edit

This interface allows the EAI tool to edit the configuration of a resource adapter
or a service. This interface implementation is provided by the resource adapter
provider or a third party discovery service provider.

Metadata discovery
This primary interface to the enterprise metadata discovery plug-in holds a
reference to the ToolContext. ToolContext is used for logging and tracing and to
provide information that helps perform discovery.

The discovery service must specify the following for this interface.
1. List of AdapterType - For JCA adapters only one AdapterType comprises this

list.
2. MetadataTree - Represents the object tree structure that would be displayed by

the tool. Each node in the tree is represented by an instance of a
MetadataObject. The nodes can have their own properties. The tool can also
apply filter properties when fetching children for the node.

3. Service Description - Created on request by the user for an inbound or
outbound service. Includes all of the objects selected prior to a request.

Metadata discovery adapter type
Adapter type metadata identify aspects of the adapter that are supported by the
enterprise metadata discovery implementation. The Adapter Foundation Classes
provide an interface for adapter type information.

The Adapter Foundation Classes provide an implementation for this interface:
WBIAdapterTypeImpl. Individual discovery service implementations should use this
base class and not implement their own.

Multiple adapterTypes can be supported by a single enterprise metadata discovery
implementation. A use case might involve a single adapter instance as a channel

WebSphere Adapter development overview 127

for multiple back-end EIS assets. IBM WebSphere recommends a single
adapterType for each enterprise metadata discovery implementation.

The following information must be provided for this class by a discovery service
implementation.
v ID (for example, PeopleSoft)
v Description (for example, PeopleSoft JCA Adapter)
v Display name (for example, PeopleSoft Adapter)
v Vendor (for example, IBM)
v Version (for example, 6.2)
v List of OutboundConnectionTypes - Lists the outbound connection types an

adapter can support. A single adapter might support multiple connection types.
The mapping of connection type to adapter is driven by the number of managed
connection factories that are supported by the adapter. If the adapter uses a
different connection than one provided by a managed connection factory, this list
must include the additional connection types. The connection types displayed in
the tool for selection are only the ones that can be used to perform metadata
discovery. Such connections are marked as true for
isSupportedInMetadataService. For all connection types that cannot be used to
perform discovery, set isSupportedInMetadataService to false.

v List of InboundConnectionTypes - List of inbound connection types supported
by an adapter. The inbound connections map to the Activation Specifications
supported by an adapter.

Metadata discovery connection type
You must specify connection type values for the enterprise metadata discovery
service. The connection type includes connection configuration instance
information for outbound and inbound directions.

ConnectionType is a factory for ConnectionConfiguration instances. The enterprise
metadata discovery tool uses the instances to create actual and persistent
connections. The connection can be inbound or outbound and is unique within the
AdapterType.

OutboundConnectionType

The enterprise metadata discovery service uses the OutboundConnectionType
property to create an outbound service description. The mapping of connection
type to adapter is driven by the number of managed connection factories that are
supported by the adapter. If the adapter uses a different connection than one
provided by a managed connection factory, this list must include the additional
connection types. The connection types displayed in the tool for selection are only
the ones that can be used to perform metadata discovery. Such connections are
marked as true for isSupportedInMetadataDiscovery. For all connection types that
cannot be used to perform discovery, set isSupportedInMetadataDiscovery to
false.

IBM WebSphere recommends implementing a connectionType for metadata that is
separate from that for run time. The metadata connectionType must contain
properties needed to perform the metadata discovery only. The runtime connection
type should have properties for the resource adapter and the managed connection
factory. The discovery service should attempt to reuse the properties from the
metadata connectionType wherever possible. Candidates for reuse include the
username and password properties. A utility class, EMDUtil, provides methods to

128 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

copy matching properties from metadata connection to runtime connection. For
more information, see the WBIOutboundConnectionTypeImpl in the Javadocs.

The following information must be provided for this class by a discovery service
implementation:
v ID (for example, PeopleSoft)
v Display name (for example, PeopleSoft)
v Description (for example, PeopleSoft Component Interface)
v ResourceAdapterBean class (for example,

″com.ibm.j2ca.peoplesoft.PeopleSoftResourceAdapter″)
v ManagedConnectionFactory bean class (for example,

″com.ibm.j2ca.peoplesoft.PeopleSoftManagedConnectionFactory″)
v OutboundConnectionConfiguration - Represents properties needed to connect to

the EIS for discovery and to create service descriptions. For connection types
that are used only at runtime this represents managed connection factor and
resource adapter properties.

v isSupportedForMetadataDiscovery - is set to true if the connectionType can be
used for metadata discovery. Only valid, specified connection types are
displayed for connectionType selection.

InboundConnectionType

InboundConnectionType is used to create Inbound service description. An adapter
can support multiple Inbound connection types, the mapping of inbound
connection is to Activation Specs, as many activation specs an adapter supports
than many inbound connection types would have to be supported.

The following information has to be provided by discovery service implementation
for this component.
v ID (for example, PeopleSoft)
v Display name (for example, PeopleSoft)
v Description (for example, PeopleSoft Component Interface)
v ResourceAdapterBean class (for example,

″com.ibm.j2ca.peoplesoft.PeopleSoftResourceAdapter″)
v ActivationSpecBean class e.g.

″com.ibm.j2ca.peoplesoft.PeopleSoftActivationSpec″

v InboundConnectionConfiguration - Represents resource adapter and Activation
Specification bean properties.

Discovering System Capabilities

After selecting the ConnectionType, enter the properties for connection
configuration. This typically includes those properties needed to connect to the EIS
or EIS repository and also properties required to define the artifacts that will be
generated by enterprise metadata discovery. Once you enter the properties the tool
requests, the enterprise metadata discovery service attempts to establish a
connection to the EIS repository. The service extracts values for configuration
properties and opens a connection to the EIS repository. This is represented by
MetadataConnection object.

WebSphere Adapter development overview 129

MetadataConnection

The MetadataConnection object represents the connection to EIS or EIS repository.
This interface is implemented by the Adapter Foundation Classes only and does
not require any implementation from discovery service instances.

MetadataConnection uses the managed connection factory to create the connection
to the EIS. The configuration properties specified by the user are mapped to the
managed connection factory. AgetConnection() call is placed to obtain an EIS
connection.

Besides the physical connection it represents, MetadataConnection also has a handle
to the ConnectionType and OutboundConnectionConfiguration.

Once the connection is established, enterprise metadata discovery makes the
request to get the MetadataTree from the MetadataDiscovery implementation. If
there is a filter PropertyGroup specified at the MetadataTree you are prompted
enter those properties.

MetadataTree model:

The enterprise metadata discovery tool displays a MetadataTree model that
represents an object structure in the EIS. The display also reflects your enterprise
metadata discovery service implementation and filters that you can apply to the
MetadataTree model to improve usability.

The structure of the MetadataTree reflects not only the EIS business data but also
your enterprise metadata discovery implementation. For example, one
implementation might display the properties of the nodes or MetadataObject in the
MetadataTree model. Another implementation might display function parameters
as nodes in the MetadataTree model.

IBM WebSphere recommends displaying the leaf-level properties in the model only
if there is an advantage to doing so. In most cases, simple properties or function
parameters should not be added as nodes in the tree. The description of the node
representing the object or the function should provide information about the node.
For example, in an EIS where function overloading is possible, the function
description for the node should show enough parameter information to make the
right import selection.

To improve usability, provide filters on MetadataTree models as applicable. For
example, if the EIS contains many objects and is difficult to search, a filter might
help. A best practice recommendation is to provide an option of inbound or
outbound as a filter property for the MetadataTree. Doing so restricts the objects
selected to one type for each discovery service pass. Where the same objects are
used for inbound and outbound, skip this property and define it after choosing
objects for MetadataSelection.

For more information, see the WBIMetadataTreeImpl in Javadocs.

MetadataSelection:

MetadataSelection is a container that holds objects and properties that you select
to guide or filter enterprise metadata discovery.

130 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

In addition to object selection, MetadataSelection also holds properties that are
applicable for the selected objects. Such properties include the following:
v Specification of service type: inbound or outbound
v Namespace for use by business object definitions
v ConnectionType that for use at run time.

This step is required if the ConnectionType at run time differs from that for
metadata discovery. Regardless, IBM WebSphere recommends a different
connectionType for metadata than for run time. The metadata connectionType
should contain properties needed to perform the discovery only. The runtime
connectionType should contain resource adapter, managed connection factory, or
ActivationSpecWithXid properties.

Implement the discovery service to reuse properties (for example, username,
password) from the MetadataSelection connectionType wherever possible. You can
specify other properties after the service description is created, when the tool
checks whether artifact properties have been specified.

MetadataObject:

The MetadataObject represents the node of the MetadataTree. You define properties
and filters in this object that help guide enterprise metadata discovery.

IBM WebSphere recommends that you specify objectProperties that suggest the
EIS objects you are defining. You should also define filter properties in
MetadataObject that might make fetching of child objects more efficient and usable.
For example, for JDBC, if the node represents a schema, you might define a filter
to fetch tables by name rather than fetching all tables.

Enterprise metadata discovery description APIs
The enterprise metadata discovery description APIs comprise the objects that
correspond to the artifacts generated by the discovery process. The artifacts include
business object XSDs, the SCA import and export files and WSDL files.

The description APIs embody the service metadata generated by the discovery
service in response to import requests. The high-level model for this information
includes the following:
v ServiceDescription

v FunctionDescription

v DataDescription

v ConnectionDescription

Service, function, and data descriptions are present for both inbound and
outbound services. The models for the connection and function descriptions differ
slightly for inbound and outbound (for consistency with the JCA 1.5 specification).
The data description is identical for both inbound and outbound.

Service descriptions:

You extend abstract service description classes and implement methods to define a
service description for an inbound or outbound object.

You can specify a service description for inbound or outbound connections. The
objects you select are maintained by the MetadataSelection object. The
MetadataSelection is passed to the discovery service implementation to complete

WebSphere Adapter development overview 131

the import. The Adapter Foundation Classes provide an implementation for
ServiceDescription as abstract classes. Discovery service implementations should
extend these classes and implement the abstract methods

Inbound service descriptions

Enterprise metadata discovery service implementations should provide the
following information for an inbound service description.
v Service name - The implementation must provide a default service name, (for

example, PeopleSoftInboundService), but you can specify this property.
v Inbound connection description - This is the connection description for inbound,

typically resource adapter and Activation Spec beans
v Function list - These represent the methods and functions that can be invoked

through the inbound connection. An inbound function description describes the
interface for each of these methods.

v EIS function selector - A function selector is a class provided by the adapter
developer or the integration developer that takes as input the message received
from the adapter and returns the name of the EIS function that the message
represents. This is used by the SCA run time to determine which method to
invoke on the next SCA component. The JCA adapters would use the base class
implementation of FunctionSelector. The default value for this property is the
name of Generic Function selector provided by the Adapter Foundation Classes.
The discovery service can override the default value.

Function selector

The function selector provides a unique name for the EIS function name. Due to
SCA restrictions, method overloading cannot be used in interface definitions.
Accordingly, you cannot have two methods with same name but which accept
different arguments. For most inbound descriptions, the method name and the EIS
function name are identical.

The base class FunctionSelector creates the EIS function name based on whether
the input object is an AfterImage or a Delta. If a delta, then the name returned is
emitDelta_business_object_name; if an AfterImage, then name returned is
emit_TopLevelVerb_AfterImage_busineess_object_name.

See Business object names for more information about naming business objects.

Outbound service descriptions

Discovery service implementations must provide the following information for
outbound service descriptions.
v Service name - The implementation must provide a default service name.
v Outbound connection description - his is the connection description for

outbound, typically resource adapter and Activation Spec beans
v Function list - These represent the methods and functions that can be called by

the client. An Outbound Function Description describes the interface for each of
these methods.

Connection descriptions:

132 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

You must provide EIS connection descriptions for the enterprise metadata
discovery service. Adapter Foundation Classes contain interface implementations to
help you get started.

Like ServiceDescription, ConnectionDescription can be either inbound or
outbound service. Adapter Foundation Classes provide implementation for
ConnectionDescription interfaces. Discovery service implementations need not
implement these interfaces.

Inbound Connection Description

The following information must supplied by the discovery service
implementations:
v ResourceAdapter - This is an instance of the ResourceAdapter JavaBean that will

be used to configure a resource adapter instance.
v ActivationSpecWithXid - This is an ActivationSpecWithXid instance that will be

passed to ResourceAdapter.endpointActivation() at run time to support the
methods defined on the inbound service.

Outbound Connection Description

The following information must supplied by the discovery service implementations
v ResourceAdapter - This is an instance of the ResourceAdapter JavaBean that will

be used to configure a resource adapter instance.
v ManagedConnectionFactory - This is an instance of the ManagedConnectionFactory

JavaBean that will be used to configure an instance of the
ManagedConnectionFactory at run time for creating outbound connections.

Function descriptions:

Function descriptions apply to either inbound or outbound service. The Adapter
Foundation Classes provide implementations for the FunctionDescription
interfaces. Discovery service implementations need not implement these interfaces.

Inbound Function Description

The following information has to be filled in by the discovery service
implementations:
v Name - e.g. emitDeltaCustomer or emitCreateAfterImageCustomer

v EIS Function Name - the name of the function that would be returned by
function selector. E.g. emitDeltaCustomer or emitCreateAfterImageCustomer.

v Input - input data description representing the object that is input to the method
v Output - output data description representing the object that is returned by the

method. This would be null for JCA adapters as they support only One-way
interaction style.

v MetadataImportConfiguration - Handle to the metadata import configuration or
the object that was selected by the user which lead to creation of this method
description.

See ″Inbound Operation Signatures″ in Standard operations for descriptions of the
inbound operation signatures and scenarios for their use.

WebSphere Adapter development overview 133

Outbound Function Description

The following information has to be filled in by the discovery service
implementations:
v Name - e.g. createCustomer, applyChangesCustomer
v InteractionSpec - Instance of interaction spec which has function name specified

that represents this method description. E.g. for createCustomer the function
name would be ’Create’.

v Input - input data description representing the object that is input to the method
v Output - output data description representing the object that is returned by the

method.
v MetadataImportConfiguration - Handle to the metadata import configuration or

the object that was selected by the user which lead to creation of this method
description.

See ″Outbound Operation Signatures″ in Standard operations for descriptions of
the outbound operation signature and scenarios for their use.

Data descriptions:

The data description implementation enables the adapter to create valid data
objects for EIS requests and to interpret the objects returned as responses. You
must implement DataDescription, InboundServiceDescription, and
OutboundServiceDescription.

DataDescription

The data description is common to inbound and outbound service. It includes a
definition of the structure and content of adapter business objects that will be
passed between the client and adapter at run time. Each DataDescription instance
should have a unique namespace. The convention followed by IBM is to use a base
namespace concatenated by the name of the corresponding object.

InboundServiceDescription

The InboundServiceDescription must have a default name and associated function
descriptions. The standard top-level operations are described in Inbound Operation
Signatures. InboundFunctionDescription should use the same functionName and
EISFunctionName.

Note: If needed, the default FunctionSelector can be overridden.

OutboundServiceDescription

The OutboundServiceDescription must have a default name, along with associated
function descriptions. The supported, standard top-level operations are described
in the Outbound operation signatures table in Standard operations.

Adapters that can provide functionality above and beyond these standard
operations can opt to expose unique, EIS-specific operations. giving customers
access to more functionality of the EIS. Define names and behavior on a
case-by-cases basis to most accurately reflect the functionality of the underlying
EIS.

134 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Note: To limit confusion, custom operation names should not conflict with the
standard operation names mentioned above.

Note: In cases where the mapping of EIS operations to Create, Retrieve, Update
and Delete is equivalent except for naming conventions–for example, PeopleSoft
has a Find operation that is functionally equivalent to a Retrieve–the EIS-specific
operation should not be exposed since it adds no value.

Note: Function-based adapters occasionally may be required to perform multiple
individual EIS operations to achieve the equivalent of a single Create, Retrieve,
Update, or Delete operation. IBM WebSphere recommends that these low-level EIS
operations also be exposed so that users are free to compose equivalent operations.

Business object structures for enterprise metadata discovery
In the Adapter Foundation Classes, BusinessObject and its
BusinessObjectAttribute and Metadata structures facilitate the generation of XML
schema definitions.

The Adapter Foundation Classes allow discovery service implementations to use
Java APIs to prepare the BusinessObject structure. This BusinessObject structure
can then be serialized to create an XML schema document string. This will reduce
the effort for individual discovery service implementations, as they do not use
XML parsers or general string concatenation functions to prepare the XML schema
definitions.

BusinessObject:

BusinessObject contains properties and methods that help the discovery service
generate object definitions.

The discovery service must provide the following for BusinessObject:
v Name – For example, PURCHASEORDER
v BusinessObjectAttributes

v Namespaces – These name spaces are added to the XSD definition.
v TargetNameSpace – For example, http://www.ibm.com/xmlns/prod/websphere/

j2ca/peoplesoft/purchaseorder.
v ImportedNameSpaces – These name spaces would be added as <import.. in XSD.
v IncludeNameSpaces – These name spaces would be added as <include.. in XSD.
v TopLevel – Boolean if business object is TopLevel and needs a business graph

definition
v Metadata – Metadata object representing the business object level

application-specific information.

BusinessObject provides two methods:
v Serialize – To obtain the XSD string for the object.
v getGraphDefinition – To obtain the business graph definition for a top-level

business object.

BusinessObjectAttribute:

BusinessObjectAttribute provides information that further defines the business
object for the discovery service.

The discovery service must provide the following for BusinessObjectAttribute:

WebSphere Adapter development overview 135

v Name – For example, VENDORID
v Type – For example, string
v Cardinality – 1 or N

v Required – Boolean
v ObjectTypeName – For cases where an attribute maps to an object for example,

porecord:PORECORD.
v Max Length

v Metadata – the MetadataObject representing attribute-level application-specific
information.

ImportedNamespace:

ImportedNamespace describes the names that must be imported into the business
object definition.

This class represents the import statement in the XML schema definition. There are
two properties that discovery service must provide:
v NameSpace – The name that must be imported
v Location – The location of the file that must be imported

Metadata:

The metadata component describes information about a business object definition
and its attributes.

The business object and attribute level metadata should be modeled using this
component. The discovery service must provide the following information for this
object:
v Source – Added in the application-specific information statement. For example,

WBI.
v NameSpace – Added to application-specific information clause.
v Name-value pairs for application-specific information properties (HashMap). –

For example, pasi:Getter value getObjectName.

Namespace definition
The namespace http://www.ibm.com/xmlns/prod/websphere/j2ca is reserved for
XML artifacts produced by or employed by WebSphere Adapters.

Adapters should use http://www.ibm.com/xmlns/prod/websphere/j2ca/
<adapter_name> for any adapter-specific artifacts generated during the metadata
import process; for example, http://www.ibm.com/xmlns/prod/websphere/j2ca/
peoplesoft.

For Business Objects the name of the business object should be appended to the
base name space; for example,http://www.ibm.com/xmlns/prod/websphere/j2ca/
peoplesoft/purchaseorder.

For ASI schema the target namespace used must be http://www.ibm.com/xmlns/
prod/websphere/j2ca/peoplesoft/metadata.

Implementing enterprise metadata discovery classes
The following subsections describe the steps and constructs required for
implementing an enterprise metadata discovery instance.

136 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

BootStrap:

WebSphere Integration Developer performs a bootstrap step to identify a resource
adapter that has been enabled for enterprise metadata discovery service.

To identify a resource adapter that is enabled for metadata discovery service,
WebSphere Integration Developer launches a bootstrap step to find a
discovery-service.xml file. This file should be located in the META-INF folder for
the resource adapter. An example of this file is found in the sample delivered with
the WebSphere Adapter Toolkit.

Resource bundles:

Resource bundle files capture properties and logging and tracing messages that are
germane to an enterprise metadata discovery implementation.

Each enterprise metadata discovery implementation must have two resource
bundle files. One captures the property group and property names and
descriptions for properties displayed by WebSphere Integration Developer tooling.
The other is for messages written to the log file for tracing. The bundle names
must follow the convention of including the EMD.properties file in the enterprise
metadata discovery package as shown in the following examples:
v com.<company name>.j2c.<app name>.emd.EMD.properties to capture resource

bundles for property groups
v com.<company name>.j2c.<app name>.emd.LogMessages.properties to capture

logging and tracing resource bundles.

The property groups representing resource adapter, managed connection factory,
and the Activation Specification must have property names matching their bean
properties.

Property groups:

All the properties used in the discovery service are represented by the
PropertyGroup set of interfaces.

A property group is a collection of properties. A property group can be associated
with the Inbound- and OutboundConnectionConfiguration, MetadataTree, nodes of
the MetadataTree (MetadataObject and MetadataSelection). PropertyGroup
supports nesting and can therefore include child PropertyGroups. It also provides a
listener and an event interface to trickle changes from one property into another
property or property group.

The Adapter Foundation Classes provide a complete implementation of the
PropertyGroupAPIs. Individual discovery service implementations should not
implement these APIs.

The keys properties of this API set are as follows:
v SingleValuedProperty – Allows a single property of any Java type. It includes

attributes such as required, sensitive, hidden, primitive, default value, and valid
values.

v MultiValuedProperty – Allows a property to be represented as a list of values.
For example, you can represent the operations for a BusinessObject using this
type of property and then make multiple selections.

WebSphere Adapter development overview 137

v PropertyGroup – A collection of properties including single and multi types and
PropertyGroup itself. For example, OutboundConnectionConfiguration allows
three property groups in one Main property group: UserConfiguration that
includes Username and Password; MachineConfiguration that includes Hostname
and PortNo; and Miscellaneous that includes other properties such as Prefix
and DirectoryName.

v PropertyChangeListener – Used when a property change affects some other
property or property group. This can be associated to any property or a property
group. Each property can, in turn, have associated listeners that it can notify
when a change happens. For example, Property A default value must change
when Property B’s value changes. Accordingly, the PropertyChangeListener that
references Property A will be added to the listener list for Property B. When
property B is changed in the set method, propertyChange can be fired on all
listeners in the list. This will lead to changes in Property A.

v PropertyChangeEvent – An event that would be passed when propertyChange is
fired on PropertyChangeListener. It includes the type of change, such as
PROPERTY_VALUE_CHANGE, PROPERTY_ENABLED, PROPERTY_DISABLED,
PROPERTY_VALID_VALUES_CHANGE, OLD_VALUE, NEW_VALUE, and SOURCE_OF_CHANGE.

v TableProperty A property representing a table with rows and columns. Each
column is represented by the PropertyDescriptor instance and each cell
corresponding to a given row and column is represented by a
SingleValuedProperty implementation.

v TreeProperty A property representing a tree of selectable nodes. Each node is
represented by a NodeProperty implementation which can be selected,
highlighted and can have configuration properties represented by a
PropertyGroup instance.

Enterprise metadata discovery implementation samples
The code samples in this section are from the TwineBall sample enterprise
metadata discovery implementation.

For the precise class structure and additional information, refer to the code for the
TwineBall enterprise metadata discovery implementation that is delivered with the
WebSphere Adapter Toolkit.

Logging and Tracing:

This describes the logging and tracing implementation for enterprise metadata
discovery.

Use the WBIMetadataDiscoveryImpl.getLogUtils() call to acquire an LogUtils
instance. Then use the appropriate method to perform logging and tracing.

Property group sample:

Use the property group APIs to create property groups required for an enterprise
metadata discovery implementation.

To enable validation of specific properties, extend the
WBISingleValuedPropertyImpl or WBIMultiValuedPropertyImpl and then implement
the vetableChange() method. Any validation can be performed in this code. In
case of failures, PropertyVetoException must be thrown.

138 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

A propertyChange() method should be implemented if a property needs to listen
for changes on some other property. Check the TwineBall sample for
ServiceTypeSingleProperty.

To enable the function of both vetoableChange and propertyChange, the instance of
the property should be added to the propertyChangeListener list. In the
TwineBallMetadataSelection class in the TwineBall sample, the property
representing operations listens on the property for serviceType:
propertyGroup = new WBIPropertyGroupImpl(Constants.SELECTION_PROPERTIES);

propertyGroup.setDisplayName(WBIMetadataDiscoveryImpl.getPropertyName
(Constants.SELECTIONPROPERTIES));

propertyGroup.setDescription(WBIMetadataDiscoveryImpl.getPropertyDescription
(Constants.SELECTIONPROPERTIES));

WBISingleValuedPropertyImpl typeProp = createServiceTypeProperty(propertyGroup);
ServiceTypeSingleProperty operationProp = createNamespaceProperty(propertyGroup);
createMaxRecordProperty(propertyGroup);
createRelativePathProperty(propertyGroup);

// Copy the applied properties to the new instance
if (this.getAppliedSelectionProperties() != null)

EMDUtil.copyValues(this.getAppliedSelectionProperties(), propertyGroup);
typeProp.addPropertyChangeListener(operationProp);

Progress monitor sample:

For enterprise metadata discovery processes that are time-consuming–such as
retrieving information from an EIS and building MetadataObject instances–you can
use the progress monitor.

While you are running the discovery service, the progress monitor can capture
information on current processes and allow you to cancel operations. You can
locate a handle to ProgressMonitor using the
following:WBIMetadataDiscovery.getLogUtils().getProgressMonitor(). As a
process elapses, you can use the setProgress() method to set progress levels that
approach a specified maximum as shown below:
WBIMetadataConnectionImpl.getToolContext().getProgressMonitor().setMaximum(100);
WBIMetadataConnectionImpl.getToolContext().getProgressMonitor().setMinimum(0);
WBIMetadataConnectionImpl.getToolContext().getProgressMonitor().setProgress(50);
WBIMetadataConnectionImpl.getToolContext().getProgressMonitor().setNote

("Getting namespace from Peoplesoft");

WBIMetadataDiscoveryImpl sample:

WBIMetadataDiscoveryImpl is the main entry class for invoking enterprise metadata
discovery.

Interaction between the enterprise metadata discovery service and an EIS
originates in an implementation of the WBIMetadataDiscoveryImpl class. You must
implement the methods described below.

Constructor

The constructor should call super(Bundle Name). The bundle name is the name of
the resource bundle for property-group properties of the enterprise metadata
discovery; for example: super("com.abc.j2c.testapp.emd"). When creating
resource bundles the EMD.properties and LogMessages.properties should share
the same package name.

WebSphere Adapter development overview 139

public TwineBallMetadataDiscovery() throws MetadataException {
super("com.ibm.j2ca.sample.twineball.emd");

}

The WBIAdapterTypeImpl constructor requires the following parameters:
1. The name of the class representing the ResourceAdapter class.

This is used to create property groups for ResourceAdapter in enterprise
metadata discovery.

2. Number of outbound connections
3. Number of inbound connections

getAdapterTypeSummaries

Set supportedInMetadataService to true for connections that you want WebSphere
Integration Developer to display when performing enterprise metadata discovery.
Add the connections to adapterType using the add<Inbound/
Outbound>ConnectionType() method:
public AdapterTypeSummary[] getAdapterTypeSummaries() throws MetadataException {

super.getLogUtils().trace(Level.FINEST, CLASSNAME, "getAdapterTypeSummaries",
"Enter Method");
adapterType = new TwineBallAdapterType();
return new WBIAdapterTypeImpl[] { adapterType };

}

getAdapterType

This method returns the instance of adapterType for a given ID. If the enterprise
metadata discovery implementation supports only one adapterType, then it returns
either that ID or the input ID.

getMetadatatree

This method returns an instance of the WBIMetadataTreeImpl implementation. Each
enterprise metadata discovery implementation extends the WBIMetadataTreeImpl
class and an instance of that class is returned from this method.
public MetadataTree getMetadataTree(MetadataConnection conn)

throws MetadataException {
this.connection = (WBIMetadataConnectionImpl) conn;
this.connType = (WBIOutboundConnectionTypeImpl)connection.getConnectionType();
tree = new TwineBallMetadataTree(connection, super.getLogUtils());
tree.setSelectionStyle(MetadataTree.MULTI_SELECT);
return tree;

}

createServiceDescription

This class returns an instance of the inbound or outbound service description,
depending on which input selection is set.

Tip: You might usefully iterate through import configurations in the
MetadataSelection set and then use the properties specified on MetadataSelection
to complete the service description.

The instance of ServiceDescription created should be filled in with name,
namespace, function description and configurations as shown below. The method
copyPropertyValues(), defined on connection configurations, copies the properties
that match between the connection configuration that was used to perform

140 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

discovery and the one that used for run time. The copy is based on names. For
example, if a property name Username exists in the configuration used for
discovery and that used for run time, the Username value is copied.
public ServiceDescription createServiceDescription

(MetadataSelection importSelection) throws MetadataException {
ServiceDescription description = null;
WBIMetadataSelectionImpl selection = (WBIMetadataSelectionImpl)

importSelection;
MetadataImportConfiguration[] confArray = selection.getSelection();
if (confArray.length == 0)

return description;
super.getLogUtils().trace(Level.FINER,

CLASSNAME, "createServiceDescription()",
"Number of MetadataImportConfigurations " + confArray.length);

PropertyGroup serviceType = selection.getAppliedSelectionProperties();
String directionality = getDirectionality(serviceType);
String nameSpace = getNameSpace(serviceType);
boolean inbound = false;
if (directionality.equals("Inbound")) {

super.getLogUtils().trace(Level.FINER, CLASSNAME,
"createServiceDescription()",

"Selected Service Type is:Inbound");
inbound = true;

}
if (inbound) {

description = createInboundServiceDescription
(importSelection, selection, nameSpace);

} else {
description = createOutboundServiceDescription

(importSelection, selection, nameSpace);
}
return description;

}

setToolContext

To implement setToolContext(), initialize the LogUtils instance and set it on the
Foundation Class WBIMetadataDiscoveryImpl.
public void setToolContext(ToolContext toolContext) {

super.setToolContext(toolContext);
try {

LogUtils logUtils = new LogUtils(toolContext.getLogger(),
CURRENT_PACKAGE, "TwineBall Adapter", "6.0.0");

if(logUtils != null) logUtils.trace(Level.FINER, CLASSNAME,
"getToolContext()", "LogUtils Initilialized");

super.setLogUtils(logUtils);
} catch (ResourceAdapterInternalException e) {

e.printStackTrace();
System.out.println(e.getMessage());
System.out.println("Unable to create LogUtils instance");

}
}

WBIAdapterTypeImpl sample:

You use this class to implement the adapter type for enterprise metadata discovery.

Extend WBIAdapterTypeImpl and implement the methods described in the sections
below.

Constructor

The constructor populates the adapter type instance as shown below:

WebSphere Adapter development overview 141

public TwineBallAdapterType()throws MetadataException{
super(Constants.RESOURCE_ADAPTER_BEAN_NAME, 2, 1);
setId(Constants.ADAPTER_NAME);
setDisplayName(Constants.ADAPTER_NAME);
setDescription(WBIMetadataDiscoveryImpl.getPropertyDescription

(ADAPTERTYPE_PROPERTY));
setVendor(VENDOR);
setVersion(VERSION);
setOutboundConnections();
setInboundConnections();

}

setInboundConnections

The setInboundConnections() method sets the inbound connections on the adapter
type.

private void setInboundConnections() throws MetadataException {
TwineBallInboundConnectionType inConnTypeForRuntime =

new TwineBallInboundConnectionType(this);
addInboundConnectionType(inConnTypeForRuntime);
inConnTypeForRuntime.setResourceAdapterJavaBean

(Constants.RESOURCE_ADAPTER_BEAN_NAME);
inConnTypeForRuntime.setActivationSpecJavaBean

(Constants.ACTIVATION_SPEC);
}

setOutboundConnections

This method sets the outbound connections on the adapter type. The connection
type that can be used to perform discovery should be set to true for
IsSupportedInMetadataService and connections that can be used for run time
should be set to true for IsSupportedAtRuntime.

Tip: You might find it preferable to have separate connection types for enterprise
metadata discovery and for run time. This way the property group for discovery
can display properties needed to perform the discovery and not the entire set of
properties describing ResourceAdapter and ManagedConnectionFactory properties.

private void setOutboundConnections() throws MetadataException {
TwineBallOutboundConnectionType outConnTypeForRuntime =

new TwineBallOutboundConnectionType(this);
TwineBallOutboundConnectionType outConnTypeForMetadata =

new TwineBallOutboundConnectionType(this);
addOutboundConnectionType(outConnTypeForMetadata);
addOutboundConnectionType(outConnTypeForRuntime);
outConnTypeForMetadata.setManagedConnectionFactoryJavaBean

(Constants.MANAGED_CONNECTION_FACTORY_NAME);
outConnTypeForRuntime.setManagedConnectionFactoryJavaBean

(Constants.MANAGED_CONNECTION_FACTORY_NAME);
outConnTypeForMetadata.setResourceAdapterJavaBean

(Constants.RESOURCE_ADAPTER_BEAN_NAME);
outConnTypeForRuntime.setResourceAdapterJavaBean

(Constants.RESOURCE_ADAPTER_BEAN_NAME);
outConnTypeForMetadata.setIsSupportedInMetadataService(true);
outConnTypeForMetadata.setIsSupportedAtRuntime(false);
outConnTypeForRuntime.setIsSupportedInMetadataService(false);
outConnTypeForRuntime.setIsSupportedAtRuntime(true);

}

WBIOutboundConnectionTypeImpl samples:

WBIOutboundConnectionTypeImpl represents the outbound connection types
supported by the adapter. The mapping of these connection types corresponds to

142 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

the managed connection factory types that are supported by the adapter. Each
managed connection factory maps to an instance of outbound connection types.

Each enterprise metadata discovery implementation should extend
WBIOutboundConnectionTypeImpl and implement the methods described below.

Constructor

The constructor takes the adapterType argument, and then sets the ID, and the
description and display names. If the description and display names must be
globalized, they can be retrieved from the resource bundle EMD.properties using
the method WBIMetadataDiscoveryImpl.getString(<prop name>).
public TwineBallOutboundConnectionType(WBIAdapterTypeImpl adapterType)

throws MetadataException {
super(adapterType);
setDescription(WBIMetadataDiscoveryImpl.getPropertyDescription

("ConnectionType"));
setDisplayName(WBIMetadataDiscoveryImpl.getPropertyName

("ConnectionType"));
setId("TwineBall");

}

createOutboundConnectionConfiguration

The createOutboundConnectionConfiguration() method returns an instance of
OutboundConnectionConfiguration. Each enterprise metadata discovery
implementation must extend WBIOutboundConnectionConfugurationImpl and an
instance of that class should be returned in this method.

public OutboundConnectionConfiguration
createOutboundConnectionConfiguration() {

if (conf == null) { //so we can return the same config later
try {

conf = new TwineBallOutboundConnectionConfiguration(this);
} catch (MetadataException e) {

throw new RuntimeException(e);
}

}
return conf;

}

WBIInboundConnectionTypeImpl samples:

WBIInboundConnectionTypeImpl represents the inbound connection types
supported by the adapter. The mapping of connection types corresponds to the
activationSpec types that are supported by the adapter. Each activationSpec will
map to an instance of inbound connection types.

Each enterprise metadata discovery implementation should extend
WBIInboundConnectionTypeImpl and implement the methods described below.

Constructor

The constructor takes the adapterType argument, setting the ID and the description
and display names. You can retrieve the description and display names from the
resource bundle EMD.properties using method
WBIMetadataDiscoveryImpl.getString(<prop name>) (if they must be globalized).

public TwineBallInboundConnectionType(WBIAdapterTypeImpl adapterType)
throws MetadataException {

super(adapterType);

WebSphere Adapter development overview 143

setDescription(WBIMetadataDiscoveryImpl.getPropertyDescription
("ConnectionType"));

setId("TwineBall");
setDisplayName(WBIMetadataDiscoveryImpl.getPropertyName

("ConnectionType"));
}

createInboundConnectionConfiguration

The createInboundConnectionConfiguration() method returns an instance of
InboundConnectionConfiguration. Each enterprise metadata discovery
implementation extends WBIInboundConnectionConfugurationImpl and an instance
of that class is returned in this method.

public InboundConnectionConfiguration createInboundConnectionConfiguration() {
try {

if (conf == null)
conf = new TwineBallInboundConnectionConfiguration(this);

} catch (MetadataException e) {
throw new RuntimeException(e);

}
return conf;

}

WBIOutboundConnectionConfigurationImpl samples:

You use this class to specify outbound connection configuration properties,
including those for ResourceAdapter and ManangedConnectionFactory, for your
enterprise metadata discovery implementation.

Extending WBIOutboundConnectionConfigurationImpl requires that you implement
the methods described below. Note that all methods that create instances of
property groups should initialize them with the applied properties. You can do this
with a utility method provided in the EMDUtil class as shown below after
successfully constructing the property group.
if (getAppliedProperties() != null)

EMDUtil.copyValues(getAppliedProperties(), adapterProp);

Constructor

The constructor accepts ConnectionType.
public TwineBallOutboundConnectionConfiguration

(WBIOutboundConnectionTypeImpl connType)
throws MetadataException {

super(connType);
}

createUnifiedProperties

The createUnifiedProperties() method returns an instance of property group that
represents ManagedConnectionFactory and ResourceAdapter properties together in a
consolidated property group. Property groups required for discovery might differ
from those needed at run time. Accordingly, this method can check
isSupportedInMetadataService and then create the corresponding property groups.
WebSphere Integration Developer uses this method to display the first connection
configuration screen for enterprise metadata discovery.

public PropertyGroup createUnifiedProperties() {
WBIPropertyGroupImpl propGroup = null;
try {

propGroup =

144 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

TwineBallConfigurationProperties.getTwineBallConfigurationProperties();
TwineBallResourceAdapter ra =

new TwineBallResourceAdapter();
WBIPropertyGroupImpl adapterProp =

(WBIPropertyGroupImpl) EMDUtil.getPropertyGroup(ra);
propGroup.addProperty(adapterProp);
if (getAppliedProperties() != null)

EMDUtil.copyValues(getAppliedProperties(), propGroup);
} catch (MetadataException e) {

throw new RuntimeException(e);
}
return propGroup;

}

createResourceAdapterProperties

The createResourceAdapterProperties method returns an instance of
PropertyGroup that represents properties you can configure for the
ResourceAdapter bean. The getPropertyGroup() method, provided in the EMDUtil
class, fetches the properties for the base class WBIResourceAdapter bean. Then the
enterprise metadata discovery implementation can add its own specific properties
to the ResourceAdapter bean class.

public PropertyGroup createResourceAdapterProperties() {
TwineBallResourceAdapter ra = new TwineBallResourceAdapter();
WBIPropertyGroupImpl adapterProp = null;
try {

adapterProp = (WBIPropertyGroupImpl) EMDUtil.getPropertyGroup(ra);
} catch (Exception e) {

throw new NullPointerException(e.getMessage());
}
return adapterProp;

}

createManagedConnectionFactoryProperties

The createManagedConnectionFactoryProperties method returns an instance of
PropertyGroup that represents properties that you can configure for the
ManagedConnectionFactory bean. The getPropertyGroup() method, provided in the
EMDUtil class, fetches the properties for the base class
WBIManagedConnectionFactory bean. As with the ResourceAdapter bean, the
enterprise metadata discovery implementation can add its own specific properties
to the ManagedConnectionFactory bean class.

public PropertyGroup createManagedConnectionFactoryProperties() {
WBIPropertyGroupImpl connProp = null;
try {

connProp = ((WBIPropertyGroupImpl)
EMDUtil.getPropertyGroup(((WBIOutboundConnectionTypeImpl)

this.getOutboundConnectionType()).getManagedConnectionFactoryJavaBean()));
} catch (MetadataException e) {

throw new RuntimeException(e.getMessage());
}
return connProp;

}

WBIInboundConnectionConfigurationImpl samples:

You use this class to specify inbound connection configuration properties,
including those for ActivationSpecWithXid, for your enterprise metadata discovery
implementation.

WebSphere Adapter development overview 145

This class is similar to WBIOutboundConnectionConfigurationImpl except instead
of ManagedConnectionFactory, WBIInboundConnectionConfigurationImpl handles
the ActivationSpecWithXid bean class. You must extend the methods described
below.

public PropertyGroup createActivationSpecProperties() {
WBIPropertyGroupImpl connProp = null;
try {

connProp = (WBIPropertyGroupImpl) EMDUtil.getPropertyGroup
(new TwineBallActivationSpec());

WBIPropertyGroupImpl credentialPropertyGroup = new WBIPropertyGroupImpl
("UserCredentials");

credentialPropertyGroup.setDisplayName
(WBIMetadataDiscoveryImpl.getPropertyName("UserCredentials"));

credentialPropertyGroup.setDescription
(WBIMetadataDiscoveryImpl.getPropertyDescription("UserCredentials"));

WBISingleValuedPropertyImpl property = new WBISingleValuedPropertyImpl
("UserName", String.class);

property.setRequired(true);
property.setDisplayName

(WBIMetadataDiscoveryImpl.getPropertyName("UserName"));
property.setDescription

(WBIMetadataDiscoveryImpl.getPropertyDescription("UserName"));
credentialPropertyGroup.addProperty(property);
property = new WBISingleValuedPropertyImpl("Password", String.class);
property.setRequired(true);
property.setSensitive(true); //show it as **** on display
property.setDisplayName

(WBIMetadataDiscoveryImpl.getPropertyName("Password"));
property.setDescription

(WBIMetadataDiscoveryImpl.getPropertyDescription("Password"));
credentialPropertyGroup.addProperty(property);
connProp.addProperty(credentialPropertyGroup);
property = new WBISingleValuedPropertyImpl("URL", String.class);
property.setRequired(false);
property.setDisplayName

(WBIMetadataDiscoveryImpl.getPropertyName("URL"));
property.setDescription

(WBIMetadataDiscoveryImpl.getPropertyDescription("URL"));
connProp.addProperty(property);
property = new WBISingleValuedPropertyImpl("eventTableName", String.class);
property.setRequired(true);
property.setDisplayName

(WBIMetadataDiscoveryImpl.getPropertyName("eventTableName"));
property.setDescription

(WBIMetadataDiscoveryImpl.getPropertyDescription("eventTableName"));
property.setValue("WBIA_EVENTS");
connProp.addProperty(property);
connProp.addProperty(createResourceAdapterProperties());

} catch (MetadataException e) {
throw new RuntimeException(e);

}
return connProp;

}

WBIMetadataTreeImpl samples:

WBIMetadataTreeImpl represents the object that holds the metadataObject nodes of
the tree that WebSphere Integration Developer displays for enterprise metadata
discovery.

Extend the WBIMetadataTreeImpl class and implement the methods described
below.

146 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Constructor

The constructor takes MetadataConnection as an argument. The constructor can
also return properties from MetadataConnection that were used to start the
discovery service; for example, prefix, directory name, and those properties that
populate the MetadataObject nodes in the tree.

public TwineBallMetadataTree(WBIMetadataConnectionImpl connection,
LogUtils logUtils)

throws MetadataException {
super(connection);
this.connection = connection;
this.logUtils = logUtils;
try {

cciConnection = (TwineBallConnection) connection.getEISConnection();
twineBallConnection = cciConnection.getEISConnection();
WBIOutboundConnectionConfigurationImpl conf =

(WBIOutboundConnectionConfigurationImpl)
connection.getConnectionCofiguration();

PropertyGroup propertyGroup = conf.getAppliedProperties();
TwineBallManagedConnection managedConnection =

(TwineBallManagedConnection) cciConnection.getManagedConnection();
} catch (ResourceException e) {

throw new MetadataException(e.getMessage(), e);
}

}

createMetadataSelection

The createMetadataSelection() method returns an instance of the specific
MetadataSelection class. The enterprise metadata discovery implementation
extends WBIMetadataSelectionImpl and returns an instance of that class in this
method.

public MetadataSelection createMetaDataSelection() {
return new TwineBallMetadataSelection();

}

createFilterProperties

The createFilterProperties() method returns a property group instance that is
used to perform filtering for nodes of the tree. This filter is used for displaying top
level nodes on the tree only.

public PropertyGroup createFilterProperties() {
WBIPropertyGroupImpl propertyGroup = null;
try {

propertyGroup = new WBIPropertyGroupImpl
(Constants.SELECTION_PROPERTIES);

propertyGroup.setDisplayName
(WBIMetadataDiscoveryImpl.getPropertyName
(Constants.SELECTIONPROPERTIES));

propertyGroup.setDescription
(WBIMetadataDiscoveryImpl.getPropertyDescription
(Constants.SELECTIONPROPERTIES));

WBISingleValuedPropertyImpl typeProp = new WBISingleValuedPropertyImpl
(Constants.SERVICETYPE, String.class);

String[] values = { Constants.INBOUND, Constants.OUTBOUND };
typeProp.setValidValues(values);
typeProp.setDefaultValue(Constants.OUTBOUND);
typeProp.setDisplayName

(WBIMetadataDiscoveryImpl.getPropertyName
(Constants.SERVICETYPE));

typeProp.setDescription
(WBIMetadataDiscoveryImpl.getPropertyDescription

WebSphere Adapter development overview 147

(Constants.SERVICETYPE));
propertyGroup.addProperty(typeProp);
WBISingleValuedPropertyImpl nameSpaceProp =

new WBISingleValuedPropertyImpl
(Constants.NAMESPACE, String.class);

nameSpaceProp.setDefaultValue(Constants.TB_DEFAULT_NAMESPACE);
propertyGroup.addProperty(nameSpaceProp);
nameSpaceProp.setDisplayName

(WBIMetadataDiscoveryImpl.getPropertyName
(Constants.NAMESPACE));

nameSpaceProp.setDescription
(WBIMetadataDiscoveryImpl.getPropertyDescription
(Constants.NAMESPACE));

ServiceTypeSingleProperty operationProp =
new ServiceTypeSingleProperty
(Constants.OPERATIONS, String.class);

String[] operations = TwineBallOperations.getOutboundOperations();
operationProp.setValidValues(operations);
operationProp.setDisplayName

(WBIMetadataDiscoveryImpl.getPropertyName
(Constants.OPERATIONS));

operationProp.setDescription
(WBIMetadataDiscoveryImpl.getPropertyDescription
(Constants.OPERATIONS));

propertyGroup.addProperty(operationProp);
} catch (MetadataException e) {

throw new RuntimeException(e);
}
return propertyGroup;

}

getMetadataObject

The getMetadataObject() method returns an instance of MetadataObject for a
specific location. Each MetadataObject instance that is added to the MetadataTree
should have a unique location such that when the tool calls this method, the
enterprise metadata discovery implementation can find the corresponding
MetadataObject and return it.

Tip: A sample implementation might usefully maintain a HashTable in
MetadataTree and add the location and corresponding MetadataObject to it
whenever a new instance of MetadataObject is added. Then this method could
return an object corresponding to the key value from Hashtable
.

public MetadataObject getMetadataObject(String objectLocationID) {
return (MetadataObject) treeNodes.get(objectLocationID);

}

listMetadataObjects

The listMetadataObjects() method returns an instance of
WBIMetadataObjectResponseImpl. The instance should be populated with
MetadataObjects using method setObjects(). The logic should use filter
properties, if supported by the implementation. Any metadataObjects that can be
selected for import should be set as true with the setIsSelectableForImport()
method.

public MetadataObjectResponse listMetadataObjects(PropertyGroup filterParameters)
throws MetadataException {

WBIMetadataObjectResponseImpl response = new WBIMetadataObjectResponseImpl();

148 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

ArrayList objects = getTopLevelObjects();
response.setObjects(objects);
return response;

}

WBIMetadataObjectImpl samples:

WBIMetadataObjectImpl represents the nodes of the tree that WebSphere Integration
Developer displays during enterprise metadata discovery. In most cases these
nodes map to objects in the EIS that the user selects to import a service
description.

WBIMetadataObjectImpl should be extended and the following methods must be
implemented.

createFilterProperties

The createFilterProperties() method returns an instance of a property group
that represents properties that you can use to filter searches for child objects of a
MetadataObject. For example, if the top level node is a schema for JDBC, you
might fetch table names with a filter consisting of a specific alphabet sequence.
Implementation should return null if such properties are not applicable. For more
information, see WBIMetadataTreeImpl.createFilterProperties in the Javadocs.

createObjectProperties

The createObjectProperties() method returns a property group that provides
information about the specific object in MetadataTree. This helps inform the user
about the metadata object instance. Implementation should return null if such
properties are not applicable.

getChildren

The getChildren() method returns an instance of WBIMetadataObjectResponseImpl.
The instance should be populated with child MetadataObjects using method
setObjects(). (This is comparable to the MetadataTree.listMetadataObjects call.)
The logic should use filter properties, if are supported by the implementation.

public MetadataObjectResponse getChildren(PropertyGroup filterParameters)
throws MetadataException {

WBIMetadataObjectResponseImpl response =
new WBIMetadataObjectResponseImpl();

ArrayList objects = getChildComponents();
response.setObjects(objects);
return response;

}

WBIMetadataSelectionImpl samples:

WBIMetadataSelectionImpl represents the object that holds the MetadataObjects
that users can select for importing. This class also holds properties that users
specify to select from the set of available MetadataObjects.

Extend WBIMetadataSelectionImpl and implement the following methods described
below.

WebSphere Adapter development overview 149

createSelectionProperties

The createSelectionProperties() method returns a property group that is used to
capture inputs from users. These inputs include business object namespace,
supported operations, and the relative path in the module project where XML
schema definitions should be saved.

public PropertyGroup createSelectionProperties() {
WBIPropertyGroupImpl propertyGroup = null;
try {

propertyGroup = new WBIPropertyGroupImpl
(Constants.SELECTION_PROPERTIES);

propertyGroup.setDisplayName
(WBIMetadataDiscoveryImpl.getPropertyName
(Constants.SELECTIONPROPERTIES));

propertyGroup.setDescription
(WBIMetadataDiscoveryImpl.getPropertyDescription
(Constants.SELECTIONPROPERTIES));

WBISingleValuedPropertyImpl typeProp =
createServiceTypeProperty(propertyGroup);

ServiceTypeSingleProperty operationProp =
createNamespaceProperty(propertyGroup);

createMaxRecordProperty(propertyGroup);
createRelativePathProperty(propertyGroup);

//Copy the applied properties to the new instance
if (this.getAppliedSelectionProperties() != null)

EMDUtil.copyValues
(this.getAppliedSelectionProperties(), propertyGroup);

typeProp.addPropertyChangeListener(operationProp);
} catch (MetadataException e) {

throw new RuntimeException(e);
}
return propertyGroup;

}

WBIMetadataImportConfigurationImpl samples:

WBIMetadataImportConfigurationImpl represents an instance of MetadataObject
and the configuration properties that users specify for it.

Extend WBIMetadataImportConfigurationImpl and implement the methods
described below.

Constructor

The constructor for WBIMetadataImportConfigurationImpl accepts MetadataObject.
public TwineBallMetadataImportConfiguration(WBIMetadataObjectImpl
metadataObject) { super(metadataObject); }

createConfigurationProperties

The createConfigurationProperties() method returns a property group for the
MetadataObject. The properties are specific to the instance of MetadataObject and
are used to capture inputs from users. Those inputs might include operations that
are supported for each MetadataObject instance, or additional information required
to process the object at run time.

WBIMetadataEditImpl samples:

150 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

The enterprise metadata discovery service uses WBIMetadataEditImpl to acquire
connectionTypes, which contains editable properties forResourceAdapter,
ManagedConnectionFactory, or ActivationSpecWithXid.

The enterprise metadata discovery tooling creates an instance of
WBIMetadataEditImpl during the boot strap process. Along with the name of the
MetadataDiscovery class, WBIMetadataEditImpl is specified in the
discovery-service.xml file. If for any reason WBIMetadataEditImpl cannot be
instantiated, then enterprise metadata discovery is not selectable in the WebSphere
Integration Developer tooling.

getOutboundConnectionType

The getOutboundConnectionType() method returns an instance of
OutboundConnectionType with an input name.

public OutboundConnectionType getOutboundConnectionType(String arg0)
throws MetadataException {

return adapterType.getOutboundConnectionTypes()[1];
}

getInboundConnectionType

The getInboundConnectionType() method returns an instance of
InboundConnectionType with an input name.

public InboundConnectionType getInboundConnectionType(String arg0)
throws MetadataException {

return adapterType.getInboundConnectionTypes()[0];
}

WBIDataDescriptionImpl samples:

WBIDataDescriptionImpl represents the data description interface. This interface
maps business object definitions to Java™ objects.

prepareChildSchemaFiles

The prepareChildSchemaFiles() method creates child objects when a parent object
cannot do so. If your adapter requires a separate and recursive creating of child
objects, then implement this method. Its should call recursively as shown:
prepareChildSchemaFiles();
prepareSchemaFiles();

public void prepareChildSchemaFiles() throws MetadataException {
WBIMetadataDiscoveryImpl.getLogUtils().trace(Level.FINER, CLASSNAME,

"prepareChildSchemaFiles",
"Entering Method");

MetadataObjectResponse response = getMetadataObject().getChildren(null);
WBIMetadataDiscoveryImpl.getLogUtils().trace(Level.FINER,

CLASSNAME, "prepareChildSchemaFiles",
"Number of BUSINESS OBJECTS: " + response.getObjectIterator().size());

for (Iterator i = response.getObjectIterator(); i.hasNext();) {
TwineBallMetadataObject bo = (TwineBallMetadataObject) i.next();
TwineBallDataDescription dataDesc = new TwineBallDataDescription();
dataDesc.setMetadataObject(bo);

dataDesc.setRelativePath(getRelativePath());
dataDesc.setName(getName().getNamespaceURI(), bo.getBOName());
WBIMetadataDiscoveryImpl.getLogUtils().trace(Level.FINER,

CLASSNAME,
"prepareChildSchemaFiles",
"Build Child Business Object : " + bo.getBOName());

if (bo.getType() == WBIMetadataObjectImpl.OBJECT)

WebSphere Adapter development overview 151

dataDesc.prepareChildSchemaFiles();
WBIMetadataDiscoveryImpl.getLogUtils().trace(Level.FINER,

CLASSNAME,
"preparingChildSchemaFiles",
"Preparing SchemaFile for " + bo.getDisplayName());

dataDesc.prepareSchemaFiles();
SchemaDefinition[] schemaFiles = dataDesc.getSchemaDefinitions();
for (int j = 0; j < schemaFiles.length; j++) {

SchemaDefinition definition = schemaFiles[j];
put(definition.getNamespace(), definition.getLocation(),

definition.getContent());
}

}
WBIMetadataDiscoveryImpl.getLogUtils().trace(Level.FINER, CLASSNAME,

"prepareChildSchemaFiles",
"Exiting Method");

}

getVerbs

The getVerbs() method returns a list of verbs when the data description represents
a top-level object that supports verbs.
public List getVerbs() {

ArrayList list = new ArrayList();
list.add(TopLevelVerbs.CREATE_TLV);
list.add(TopLevelVerbs.UPDATE_TLV);
list.add(TopLevelVerbs.DELETE_TLV);
return list;

}

getMetadataForAttribute

The getMetadataForAttribute() method returns an instance of the WBIMetadata
object and represents application specific information for the element or field in the
object definition. This corresponds to the annotation section for the element
definition.

public WBIMetadata getMetadataForAttribute(String attrName) {
WBIMetadata attributeMetadata = new WBIMetadata();
attributeMetadata.setSource(Constants.ASI_TARGET_NAMESPACE);
attributeMetadata.setObjectNameSpace(Constants.ATTR_APPINFO_ASI_TYPE_TAG);
QName asiNamespace = new QName

(Constants.ASI_TARGET_NAMESPACE, Constants.ASI);
attributeMetadata.setNameSpace(asiNamespace);
attributeMetadata.setASI(Constants.FIELD_NAME, attrName);
if (attrName.equalsIgnoreCase(Constants.PRIMARYKEY)) {

attributeMetadata.setASI(Constants.PRIMARY_KEY, "true");
}
return attributeMetadata;

}

getMetadataForBusinessObject

The getMetadataForBusinessObject() method returns an instance of the
WBIMetadata object and represents application specific information for the object
definition. This corresponds to the annotation section for the complexType
definition.

public WBIMetadata getMetadataForBusinessObject() {
WBIMetadataDiscoveryImpl.getLogUtils().traceMethodEntrance

(CLASSNAME, "getMetadataForBusinessObject");
WBIMetadata bometadata = new WBIMetadata();
bometadata.setSource(Constants.ASI_TARGET_NAMESPACE);
QName namespace = new QName(Constants.ASI_TARGET_NAMESPACE, Constants.ASI);

152 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

bometadata.setNameSpace(namespace);
bometadata.setObjectNameSpace(Constants.BUS_OBJ_APPINFO_ASI_TYPE_TAG);
bometadata.setASI(Constants.ASI_OBJECTNAME,

this.getMetadataObject().getDisplayName());
WBIMetadataDiscoveryImpl.getLogUtils().traceMethodExit

(CLASSNAME, "getMetadataForBusinessObject");
return bometadata;

} // End of BO level metadata

isContainer

The isContainer() method returns true when the complexType definition requires
a Container definition with the graph definition. The Container definition is used
when the adapter supports a RetrieveAll operation.
public boolean isContainer() {

WBIMetadataDiscoveryImpl.getLogUtils().traceMethodEntrance
(CLASSNAME, "isContainer");

boolean retValue = false;
String objName = getName().getLocalPart();
if (objName.endsWith("Container") && !objName.equals(getBOName()))

retValue = true;
WBIMetadataDiscoveryImpl.getLogUtils().traceMethodExit

(CLASSNAME, "isContainer");
return retValue;

}

getType

The getType() method returns the XML schema definition type that represents the
element or field of the object definition.

public String getType(String attrName) {
if (getCardinality(attrName) == Constants.N_CARDINALITY) {

return attrName.toLowerCase() + ":"
+ StringCaseChanger.toCamelCase(attrName);

}
return Constants.XS_STRING;

}

getAttributeName

The getAttributeName() method returns the element name that represents the field
in the object. This is the element name that would be used in the XML schema
definition.

public String getAttributeName(String attrName) {
return StringCaseChanger.toCamelCase(attrName);

}

getImportNameSpaces

The getImportNameSpaces() method returns a list of ImportedNameSpace instances
that should be imported in the business object schema.

public List getImportNameSpaces() throws MetadataException {
WBIMetadataDiscoveryImpl.getLogUtils().traceMethodEntrance

(CLASSNAME, "getImportNameSpaces");
ArrayList list = new ArrayList();
ImportedNameSpace namespace = new ImportedNameSpace();
namespace.setLocation(Constants.TWINEBALLASI_XSD);
namespace.setNameSpace(Constants.ASI_TARGET_NAMESPACE);
list.add(namespace);

WebSphere Adapter development overview 153

WBIMetadataDiscoveryImpl.getLogUtils().traceMethodExit
(CLASSNAME, "getImportNameSpaces");

return list;
}

getNameSpaces

The getNameSpaces() method returns the NameSpaces listed in the XML schema
definition. Typically these are application specific information schema definition
namespaces. Note that this list is for outside namespaces only; child object
namespaces are included by the Adapter Foundation Classes.

public List getNameSpaces() {
WBIMetadataDiscoveryImpl.getLogUtils().traceMethodEntrance

(CLASSNAME, "getNameSpaces");
ArrayList list = new ArrayList();
list.add(new QName(Constants.ASI_TARGET_NAMESPACE, Constants.ASI));
WBIMetadataDiscoveryImpl.getLogUtils().traceMethodExit

(CLASSNAME, "getNameSpaces");
return list;

}

getASISchemaName

The getASISchemaName() method returns the target namespace that represents the
application specific information schema.

public String getASISchemaName() {
return Constants.ASI_TARGET_NAMESPACE;

}

getCardinality

The getCardinality() method returns the cardinality for an elements in the
business object definition. This value is used to formulate the maxOccurs and
minOccurs tag.

public String getCardinality(String attrName) {
TwineBallAttribute definition =

(TwineBallAttribute) this.getAttributeList().get(attrName);
if (definition.isChild)

return Constants.N_CARDINALITY;
else

return "1";
}

getMaxLength

The getMaxLength() method returns the maxLength for the elements in the
business object definition. This is used to fill in the maxLength tag for the XML
schema definition.

public int getMaxLength(String name) {
return 0;

}

getRequired

The getRequired() method returns true if the element is marked as required in the
XML schema definition. Otherwise, this method returns false.
public boolean getRequired(String attrName) { return false; }

154 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

getChildList

The getChildList() method returns the Iterator for the child objects of the
DataDescription.
public Iterator getChildList() throws MetadataException
{

return (this.getMetadataObject().getChildren(null)).getObjectIterator();
}

WBIInboundServiceDescriptionImpl samples:

WBIInboundServiceDescriptionImpl represents the object that populates function
descriptions for inbound service descriptions.

Implement the method shown in the section below.

setFunctionDescriptions

The setFunctionDescriptions() method populates function descriptions based on
objects and properties selected in MetadataSelection .

public void setFunctionDescriptions(MetadataSelection selection)
throws MetadataException {

MetadataImportConfiguration[] selectedObjects = selection.getSelection();
PropertyGroup selectionProperties =

((WBIMetadataSelectionImpl) selection).getAppliedSelectionProperties();
WBIMultiValuedPropertyImpl operationsProperty =

(WBIMultiValuedPropertyImpl) selectionProperties.getProperty("Operations");
String[] operations = operationsProperty.getValuesAsStrings();
ArrayList functionDescriptions = new ArrayList();
String location = TwineBallConfigurationProperties.getLocation

(selectionProperties);

// iterate through the objects.
for (int i = 0; i < selectedObjects.length; i++) {

WBIMetadataImportConfigurationImpl spec =
(WBIMetadataImportConfigurationImpl) selectedObjects[i];

WBIInboundFunctionDescriptionImpl functionDescription;
TwineBallMetadataObject metadataObj =

(TwineBallMetadataObject) spec.getMetadataObject();
for (int j = 0; j < operations.length; j++) {

String operation = operations[j];
functionDescription = new WBIInboundFunctionDescriptionImpl();
char firstCharacter = operation.charAt(0);
//convention for displaying the outbound function.
functionDescription.setName

("emit" + Character.toUpperCase(firstCharacter) +
operation.substring(1).toLowerCase() + "AfterImage" +

StringCaseChanger.toCamelCase(metadataObj.getDisplayName()));
functionDescription.setEISFunctionName(functionDescription.getName());
functionDescription.setImportConfiguration(spec);
TwineBallDataDescription dataDescription = new TwineBallDataDescription();
dataDescription.setMetadataObject(metadataObj);
dataDescription.setName(getNameSpace(),

StringCaseChanger.toCamelCase(metadataObj.getDisplayName()));
dataDescription.populateSchemaDefinitions();
dataDescription.setRelativePath(location);
dataDescription.setName(getNameSpace() + "/" +

metadataObj.getBOName().toLowerCase() +
"bg", metadataObj.getBOName() + "BG");

functionDescription.setInputDataDescription(dataDescription);
functionDescriptions.add(functionDescription);

}
}

WebSphere Adapter development overview 155

FunctionDescription[] funcArray =
new FunctionDescription[functionDescriptions.size()];

functionDescriptions.toArray(funcArray);
super.setFunctionDescriptions(funcArray);

}

WBIOutboundServiceDescriptionImpl samples:

WBIOutboundServiceDescriptionImpl represents the object that populates function
descriptions for outbound service descriptions.

Implement the method shown in the section below.

setFunctionDescriptions

The setFunctionDescriptions() method populates the function descriptions based
on objects and properties selected in MetadataSelection.

public void setFunctionDescriptions(MetadataSelection selection)
throws MetadataException {

WBIMetadataDiscoveryImpl.getLogUtils().traceMethodEntrance
(CLASSNAME,SETFUNCTIONDESCRIPTIONS);

ArrayList functionDescriptions = new ArrayList();
MetadataImportConfiguration[] supportedObjects = selection.getSelection();
PropertyGroup selectionProperties =

((WBIMetadataSelectionImpl) selection).getAppliedSelectionProperties();
WBIMultiValuedPropertyImpl operationProperty =

(WBIMultiValuedPropertyImpl) selectionProperties.getProperty("Operations");
String[] supportedOperations = operationProperty.getValuesAsStrings();
traceFiner("supportedOperations=" + supportedOperations);
String location = TwineBallConfigurationProperties.getLocation(selectionProperties);

for (int i = 0; i < supportedObjects.length; i++) {
WBIMetadataImportConfigurationImpl importConfiguration =

(WBIMetadataImportConfigurationImpl) supportedObjects[i];
WBIOutboundFunctionDescriptionImpl outboundFunctionDescription;
WBIInteractionSpec interactionSpec;
TwineBallMetadataObject metadataObj = (TwineBallMetadataObject)

importConfiguration.getMetadataObject();
traceFiner("Object name is " + metadataObj.getBOName());
for (int j = 0; j < supportedOperations.length; j++) {

String operation = (String) supportedOperations[j];
traceFiner("generating function for the " + operation

+ " operation on " + metadataObj.getBOName());
outboundFunctionDescription = new WBIOutboundFunctionDescriptionImpl();
outboundFunctionDescription.setName(operation.toLowerCase()

+ metadataObj.getDisplayName());
TwineBallDataDescription dataDescription = new TwineBallDataDescription();
dataDescription.setMetadataObject(metadataObj);
dataDescription.setName(getNameSpace(), metadataObj.getDisplayName());
dataDescription.populateSchemaDefinitions();
dataDescription.setRelativePath(location);
outboundFunctionDescription.setInputDataDescription(dataDescription);
dataDescription.setName(getNameSpace() +

"/" + metadataObj.getBOName().toLowerCase() +
"bg", metadataObj.getBOName() + "BG");
traceFiner("type of input object" +

dataDescription.getName().getNamespaceURI() +
"\\" + dataDescription.getName().getLocalPart());
if (operation != WBIInteractionSpec.RETRIEVE_ALL_OP)

outboundFunctionDescription.setOutputDataDescription(dataDescription);
else {

dataDescription = new TwineBallDataDescription();
dataDescription.setName(getNameSpace(),

metadataObj.getDisplayName() + "Container");

156 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

dataDescription.setMetadataObject(metadataObj);
dataDescription.populateSchemaDefinitions();
dataDescription.setRelativePath(location);
dataDescription.setName(getNameSpace() +

"/" +
metadataObj.getBOName().toLowerCase() +
"container", metadataObj.getBOName() +
"Container");

outboundFunctionDescription.setOutputDataDescription(dataDescription);
}
interactionSpec = new WBIInteractionSpec();
if (operation.equals(WBIInteractionSpec.RETRIEVE_ALL_OP)) {
MaxRecordSingleProperty maxCount =

(MaxRecordSingleProperty) selectionProperties.getProperty
(TwineBallMetadataSelection.MAXRECORDS);

if (maxCount.getValue() == null)
interactionSpec.setMaxRecords(((Integer)

maxCount.getPropertyType().getDefaultValue()).intValue());
else

interactionSpec.setMaxRecords(((Integer) maxCount.getValue()).intValue());
}

interactionSpec.setFunctionName(operation);
outboundFunctionDescription.setInteractionSpec(interactionSpec);
outboundFunctionDescription.setImportConfiguration(importConfiguration);
functionDescriptions.add(outboundFunctionDescription);

}
}
FunctionDescription[] functionArray =

new FunctionDescription[functionDescriptions.size()];
functionDescriptions.toArray(functionArray);
super.setFunctionDescriptions(functionArray);
WBIMetadataDiscoveryImpl.getLogUtils().traceMethodEntrance

(CLASSNAME,SETFUNCTIONDESCRIPTIONS);
}

Enterprise Metadata Discovery interfaces and implementation
for technology adapters

Version 1.1 of Enterprise Metadata Discovery includes enhancements for
configurable data handlers, function selectors, and data bindings, and a way to
build service descriptions using these configured artifacts and existing schemas.

The enhancements to Enterprise Metadata Discovery are useful when building
technology-style adapters that transform unstructured data to structured data and
make use of existing schemas instead of generating them from an EIS system.

Enterprise Metadata Discovery and technology-style adapters use data handlers,
function selectors and data bindings in the following ways:
v A data handler, which is a Java class or library of classes, is used by a process to

transform data into and from specific formats. In the WebSphere business
integration environment, data handlers transform text data of specified formats
into business objects, and transform business objects into text data of specified
formats.

v A function selector is used by adapters performing inbound processing. The
function selector directs the data to the appropriate function in the
message-driven bean (MDB) or EIS export. A function selector may inspect data
or metadata to determine how and where to direct the data.

v A data binding, which is a Java class, converts a stream of native data to a
business object during inbound processing, and converts a business object to a
stream of native data during outbound processing.

WebSphere Adapter development overview 157

Creating services that use technology-style adapters relies on being able to
implement the interfaces in the commonj.connector.metadata.build.* package or
by extending the adapter foundation classes in
com.ibm.j2ca.extension.emd.build.* package, or a combination thereof.

Building configurable artifacts (data bindings, data handlers, and
function selectors)
Building services using Enterprise Metadata Discovery involves building
configurable artifacts that include data bindings, data handlers and function
selectors.

Implementing a data handler

To implement a data handler, implement the
common.connector.runtime.DataHandler interface.

This interface contains two methods as follows:
v Object transform(Object input, Class targetClass, Object options)

v void transformInto(Object input, Object target, Object options)

The transform method takes an InputStream and produces a data object from it or
takes a data object and produces an InputStream (depending on the processing
mode). The target class indicates the processing to be performed by the data
handler. The options parameter is a map that can include an encoding parameter.
When implementing a data handler, code it to handle both byte array and string
formats, if possible.

Note: Existing Websphere adapters, as of version 6.1.x and version 6.2, use
InputStream for accessing raw data and data object for the transformed version
exclusively.

Implement the TransformInto method in a data handler to transform a data object
by writing to an output stream, so the input would be a data object, and the target
would be an output stream.

Note: A data handler should only transform from the raw payload to a data object
and vice-versa; it should not put the data in a record, or an envelope or other
adapter-specific format, as this is the processing responsibility of a data binding.

Implementing a function selector

When provided data and metadata from and adapter, the function selector
generates the native function name. A function selector implements the interface
commonj.connector.runtime.FunctionSelector. This interface contains the method
String generateEISFunctionName(Object[] args);.

The argument array you get depends on which listener interface you are using. If
you are using InboundListener (passing data only), the first object in the array is
the record. If you are using ExtendedMessageListener (passing data and metadata),
the first object in the array is an InboundNativeDataRecord that contains an
InboundInteraction spec (for metadata) and the record (for data).

For services using adapters to exchange data with a local file system (like flat files)
and services using adapters to access files on an FTP server, the
InboundInteractionSpec contains the filename and path to the files being

158 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

processed. A custom function selector can use the information in the
InboundInteractionSpec to generate a native function.

For a custom adapter, you can create either a smart function selector that utilizes
the data or metadata to perform function selection, with or without configuration;
or you can implement a simple function selector that always returns a static
function name. Implementing a simple function selector restricts your inbound
service to a single function. This, in turn, restricts the service to dealing with a
single data type; unless anyType is used in the WSDL, which is discouraged
because a WSDL that contains an anyType schema is difficult to use in WebSphere
Process Server or WebSphere ESB (due to the fact that it does not indicate the
actual type emitted).

Implementing a data binding

A data binding implements the interface
commonj.connector.runtime.RecordHolderDataBinding. This interface contains four
methods as follows:
v Record getRecord();

v void setRecord(Record record);

v DataObject getDataObject();

v void setDataObject(DataObject object);

These methods perform the mediation between the record that the adapter needs
(for example an InputStreamRecord), and the data object specified in the service
(WSDL).

The data binding can call a data handler to perform low-level transformation on an
input stream. The adapter foundation classes provide a base class, named
BaseDataBinding that adapters can extend to handle the low-level details of calling
a data handler. The BaseDataBinding data handler has three methods as follows:
v InputStream transformToInputStream(DataObject object);

v DataObject transformToDataObject(InputStream stream, QName expectedType);

v void setChildDataHandler(Qname bindingConfiguration);

To use these methods, call setChildDataHandler first with a data handler
configuration, then call one of the transform methods. The expectedType
parameter on transformToDataObject should match the type of the DataObject you
want the transformation to produce. You can derive this from the expected type
that the data binding is passed in the BindingContext interface described in the
Binding context and configuration.

Binding context and configuration

Data handlers, data bindings and function selectors can be context-enabled and
may be configurable.

BindingContext is a mix-in interface that provides access to contextual information,
such as the configuration of this binding, the expected type for data handlers and
data bindings and the type of service being used.

The BindingContext interface has several constants and one method as follows:
v void setBindingContext(Map context);

WebSphere Adapter development overview 159

To access the binding configuration, do
context.get(BindingContext.BINDING_CONFIGURATION)

To access the expected type, do context.get (BindingContext.EXPECTED_TYPE)

Function selectors, data handlers, and data bindings are all configurable. This
configuration can be quite rich, providing single and multi-valued properties,
drop-downs, and user-editable tables and trees.

Every configurable artifact needs to have a Properties bean. The class name for
this bean must follow the naming convention [Artifact]Properties, where
[Artifact] is the class name of the function selector, data binding, or data handler
being configured. The properties bean contains all the artifact’s properties as
JavaBean properties. Getters and setters must be provided for every attribute.
Arrays are allowed for complex properties.

To enable the type of configuration that provides single and multi-valued
properties, drop-downs, and user-editable tables and trees, you need a
Configuration class and an EditableType class; each one using the same naming
convention as the Properties class: [Artifact]Configuration and
[Artifact]EditableType, respectively. The Configuration class must implement the
interface commonj.connector.metadata.BindingConfigurationEdit, which has one
method of note, which is public EditableType getEditableType();.

The method public EditableType getEditableType(); return the EditableType
implementation for this artifact. The EditableType class implements the
commonj.connector.metadata.discovery.EditableType interface, which contains the
following methods:
v PropertyGroup createProperties()

v void synchronizeFromBeanToPropertyGroup(Object bean, PropertyGroup pg)

v void synchronizeFromPropertyGroupToBean(PropertyGroup pg, Object bean)

The createProperties method creates an enterprise metadata discovery (EMD)
property group that can contain several properties, or even nested property
groups.

The synchronization methods provide the capability to keep the property group
synchronized with the property bean. To specify a data handler property in a data
binding, use a BindingTypeBeanProperty in the Property bean and a
WBIBindingProperty in the property group.

Implementing Enterprise Metadata Discovery to build an
interface
The com.ibm.j2ca.extension.emd.build.* package allows a simpler way to build
services with an adapter from existing types. Instead of the EMD process
generating types, it will import them and use them in a service.

Extending the adapter foundation classes to build services

Creating services that use technology-style adapters relies on being able to
implement the interfaces in the commonj.connector.metadata.build.* package or by
extending the AFC classes in com.ibm.j2ca.extension.emd.build.* package, or a
combination thereof.

To implement the interfaces that allow you to build services, you need to extend
the following adapter foundation classes:

160 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

v WBIMetadataBuild

v WBIFunctionBuilder

v WBIMetadataType (optional)

When you extend WBIMetadataBuild, you will need to implement the following
methods:
v FunctionBuilder createFunctionBuilder(String functionSelector)

CreateFunctionBuilder returns your FunctionBuilder instance.
v String[] getConnectionSpecClassName();

getConnectionSpecClassName returns the class name of your J2CA connection
spec.

v InteractionSpec getDefaultInteractionSpec();

getDefaultInteractionSpec returns the class name of the J2CA interaction spec
that is most commonly used for your adapter.

v QName[] getAdapterSchemaTypes();

getAdapterSchemaTypes returns any common schemas; for example, schemas that
are used independently of the operation.

v SchemaDefinition[] getSchemasForQName(QName type);

getSchemasForQName returns the SchemaDefinition[s] for any Qnames that you
provide for schemas in the build process.

When you extend WBIFunctionBuilder, you will need to implement the following
methods:
v FunctionType[] getFunctionTypes();

This method returns the function type(s) for the selected operation. This is
particularly useful for determining whether this is input/output, the input or
output are the same or different.

v String getDefaultDataBindingClassName();

This method returns the default data binding class for this adapter.
v updateInputDataDescription(DataDescription dataDescription,

FunctionDescription functionDescription);

This method gives your adapter a chance to update the data description for
input.

v String[] getSupportedOperationNames();

This method returns the list of operations that the adapter foundation classes
display to the user. The user can select one of these per added function.

v String[] getRecordInterfaces();

This method returns the record interfaces that your adapter can deal with, for
instance InputStreamRecord.

v InteractionSpec getInteractionSpec(String methodName, QName inputData,
QName outputData)

This method returns a populated the interaction spec, containing the necessary
information about the function to be run. This is used in building the service
description.

WBIMetadataType

If your adapter requires the ability to generate its own types (or wrappers), you
should either extend WBIMetadataType or implement the MetadataType interface
directly.

WebSphere Adapter development overview 161

Extend WBIMetadataType if your adapter needs a simple wrapper object around a
payload object, similar to the IBM WebSphere Adapter for Flat Files and the IBM
WebSphere Adapter for FTP. The WBIMetadataType interface allows you to select a
payload type, and optionally generate a business graph structure in addition to a
plain wrapper. Implement MetadataType interface directly if you need to deal with
a more complex object structure.

To extend WBIMetadataType, implement the following methods:
v public abstract String getDefaultNamespace();

This method returns a default namespace for your adapter.
v public abstract SchemaDefinition[] getSchemaDefinitions();

This method returns the generated schema definitions, based on the payload.
The following helper methods enable you to do this:
– getImportedSchemaLocationString();

This helper method returns the relative location of the selected schema.
– getImportedSchema()

This helper method returns the Qname of the selected schema.
– getNamespace()

This helper method returns the namespace that the user has entered.

Discovery-service.xml

For the tool to detect and use your adapter, you need a discovery-service.xml file
in yor “meta-in” folder.

Here is an example of the discovery-service.xml file:
<?xml version="1.0" encoding="utf-8"?>
<emd:discoveryService xmlns:emd="commonj.connector"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/j2ee_1_4.xsd">

<j2ee:description>My Adapter</j2ee:description>
<j2ee:display-name>My Adapter</j2ee:display-name>

<emd:vendor-name xsi:type="j2ee:xsdStringType">My vendor </emd:vendor-name>
<emd:version xsi:type="j2ee:xsdStringType">My Version</emd:version>
<emd:spec-version>1.1</emd:spec-version>
<emd:metadataBuild-class xsi:type="j2ee:fully-qualified-classType">
mypackage.myadapter.MetadataBuild</emd:metadataBuild-class>
<emd:metadataEdit-class xsi:type="j2ee:fully-qualified-classType">
mypackage.myadapter.MetadataEdit</emd:metadataEdit-class>
<emd:metadataType-class xsi:type="j2ee:fully-qualified-classType">
mypackage.myadapter.MetadataType</emd:metadataType-class>

<emd:application-specific-schema>
</emd:application-specific-schema></emd:discoveryService>

Structured record implementation
StructuredRecord class needs to be implemented by adapters when the data
exchanged with backend application can be well defined. Extend foundation class
com.ibm.j2ca.base.WBIStructuredRecord and implement the associated methods.

162 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Initialize input method
This method resolves the type of the metadata if it’s a JavaBean or SDO type and
initializes the metadata interfaces appropriately. public void
initializeInput(DataExchangeFactory dataBinding, Object metadata) throws
DESPIException .

Purpose of the initialize input method

Implement the initializeInput method only if the metadata contains information
to be used to initialize the back-end connection for processing the request. For
example, if an application requires you to instantiate a corresponding component
on the back-end application to process the request.

This method should first invoke super.initializeInput() to initialize the cursors,
accessors and metadata.

Sample code

Here is a coding sample on how to implement the intitializeInput method:
public void initializeInput(DataExchangeFactory factory, Object[] metadata) throws DESPIException {

super.initializeInput(factory, metadata);
objectNaming = new ObjectNaming();
objectSerializer = new ObjectSerializer(objectNaming);
try{
objectAnnotations = super.getMetadata()

.getAnnotations(
TwineBallConstants.METADATA_NAMESPACE);

} catch(Exception e){
throw new DESPIException(e);
}
}

Initialize output method
public void initializeOutput(DataExchangeFactory dataBinding, Object
metadata) throws DESPIException.

Purpose of the initialize output method

Implement this method if there is some initialization needed to support record
retrieval from getNext().

This method should first invoke super.initializeInput() to initialize the cursors,
accessors and metadata.

Sample code

Here is a coding sample on how to implement the intitializeOutput method:
public void initializeOutput(DataExchangeFactory factory, Object[] metadata) throws DESPIException {

super.initializeOutput(factory, metadata);
objectNaming = new ObjectNaming();
objectSerializer = new ObjectSerializer(objectNaming);
try{
objectAnnotations = super.getMetadata().getAnnotations(TwineBallConstants.METADATA_NAMESPACE);
}catch(Exception e){
throw new DESPIException(e);
}

}

WebSphere Adapter development overview 163

Set managed connection method
This method passes the ManagedConnection handle to the record implementation,
allowing the record to get access to the physical connection to the backend
application to perform processing.public void setManagedConnection(
ManagedConnection managedConnection) throws ResourceException

Purpose of the set managed connection method

This method is called after initializeInput().

Implement this only if there is a need for to build a component on the backend EIS
to perform an adapter function. For example, if the backend application needs to
initialize a corresponding component on the backend EIS, use this method to
initialize that component.

Sample code

Here is a coding sample on how to implement the setManagedConnection method:
public void setManagedConnection(

ManagedConnection managedConnection) throws ResourceException {

try {
this.managedConnection = managedConnection;
if (this.getEISRepresentation() == null) {
//get the handle to physical connection
BackEndConnection conn =

managedConnection.getBackEndHandle();
Object object = conn.create(name);
if (object == null) {
throw new ResourceException("Invalid metadata defined for the input Data.");

}
//set the instantiated object, would be accessed later

this.setEISRepresentation(object);
}
} catch (Exception e) {
throw new ResourceException("Failed in creating object " + name);
}
}

Get next method
The client application invokes this method to retrieve data through the adapter. For
outbound processing, this method is used to get the response data back from the
adapter. For inbound processing, this method is called to get the inbound data
from the adapter.public boolean getNext(boolean copyValues) throws
DESPIException

Purpose of the getNext method

Use the argument copyValues to fill in values as part of getNext.

When the value for copyValues is set to True, the getNext() method should fill in
data in output cursors as part of the call.

When the value for copyValues is set to False, the getNext() method should just
keep the instance of cursors ready, but not fill in the data. The data would be filled
in using the pushValue() call, which passes an Xpath expression.

This method can be called multiple times by the client application if the operation
can return multiple records from the backend application. For example, if

164 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

the retriveAll operation could return ″N″ records from the backend application,
for each call to the getNext() method the implementation should fill in data of one
record from the backend application into OutputCursors/Accessors. It should keep
track of which record it needs to do next so in subsequent call to getNext() it can
fill in next record.

This method would be using the eisRepresentation being held on to the Record
instance, this is the backend representation of data which is used in this method to
read fields and set those in Output Cursors and Accessors.

Sample code

For a sample of how to implement the getNext() method, refer to the TwineBall
sample.

Clone method
Use this method to copy property values from the record instance to a newly
created instance.public Object clone ()

Sample

Here is a coding sample on how to implement the Clone method:
public Object clone() {
//Build a new record
TwineBallStructuredRecord record = new TwineBallStructuredRecord();
try{
//Copying property values
record.twineBallConnection = twineBallConnection;
record.objectNaming = objectNaming;
record.objectSerializer = objectSerializer;
record.setEISRepresentation(this.getEISRepresentation());
}catch(Exception e){
throw new RuntimeException(e);
}
return record;
}

Close method
This method provides cleanup for the getNext method.public void close().

Purpose of the close method

Implement this method if you need to release resources/objects after the getNext()
method has been run.

Sample code

Here is a coding sample showing how to implement the Close method:

Extract method
public void extract(String xpath) throws DESPIException What is this method?
Need a short description.

Purpose

This method needs implementation only if an Xpath expression can be used to
retrieve individual field values from backend object representation. This method is
invoked after getNext() is called with boolean value as false.

WebSphere Adapter development overview 165

The method should first extract the value from backend object representation
defined through Xpath and use OutputCursor and OutputAccessor interfaces to
populate values in runtime data structure.

Sample

Data binding implementation
Adapters must provide implementations for DataBinding interface in order to
work with WebSphere Process Server. The marshalling of data from SDO to CCI
record and from CCI record to SDO occurs through DataBinding implementation.

Interfaces

Adapters should implement the following interfaces:
v commonj.connector.runtime
v RecordHolderDataBinding

The following sections describe the methods that need implementation.

setDataObject
public void setDataObject(DataObject arg0) throws DataBindingException

This method builds an instance of adapter record instance and initializes with the
metadata that represents input SDO.

public void setDataObject(DataObject arg0) throws DataBindingException
{
// TODO Auto-generated method stub
try {
record = new TwineBallStructuredRecord();
inputBG = arg0;
DEFactorySDO binding = new DEFactorySDO();
DataObject dataObject = arg0.getDataObject(WPSServiceHelper.getRootBusinessObjectProperty
(arg0.getType()));
binding.setBoundObject(dataObject);
record.initializeInput(binding, dataObject);
}
catch (Exception e) {
throw new DataBindingException("Failed to initialize cursor", e);
}

}

getDataObject
public DataObject getDataObject() throws DataBindingException

This method builds an instance of SDO with the data that is returned from the
backend application. For example, when an adapter executes a Retrieve operation,
the data returned from the backend application is held in the adapter structured
record implementation. In this method the adapter reads data from the backend
application and builds and SDO instance.

To perform this task the adapter should use DESPI APIs. Initialize the record with
initializeOutput(), then call getNext() to build data in SDO.

This method should take care of building an instance of BG is the methods
getNamespaceURI()and getBusinessObjectName() return a type BG.

166 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

For operations where getNext() should be invoked multiple times like RetrieveAll,
the databinding should call getNext() multiple times add the built BusinessObject
to the list of BusinessObjects within the Container BO.

getRecord
public Record getRecord() throws DataBindingException

This method should return the instance of record being build in setDataObject()
call or passed through setRecord() call.

setRecord
public void setRecord(Record arg0) throws DataBindingException

This method should hold the instance of the record passed to this method as a
record instance for the binding implementation. This record instance is used in
method getDataObject().

Abstract methods (getNamespaceURI and
getBusinessObjectName)

public abstract String getNamespaceURI();

public abstract String getBusinessObjectName();

DataBinding implementation uses these two methods in getDataObject() call to
determine the SDO type that the binding should instantiate.

The generated databinding classes described the section DataBinding generator
provide the implementation for the abstract methods.

DataBinding generator

To enable the right business object type being made available to DataBinding
implementations adapters should implement DataBindingGenerator interface.

Adapters should implement com.ibm.j2ca.extension.databinding,
WBIDataBindingGenerator and implement provide a default constructor
implementation.

Call the super class constructor and pass in the name of the adapter and the
absolute classname of the base DataBinding implementation.

Sample code:
public TwineBallDataBindingGenerator() {

super("TwineBall", "com.ibm.j2ca.sample.twineball.emd.runtime.TwineBallDataBinding");
}

EMD implementations should set the absolute name of the class
for DataBindingGenerator as the generator classname in DataDescription instance.
Set the DataBinding Classname to null.

Bidirectional language support
Specifying bidirectional properties allows your adapter to exchange data in a
variety of bidirectional formats.

Bidi normalization is supported the following fashion:

WebSphere Adapter development overview 167

v When WBIStructuredRecord is initialized with data that contains Bidi
annotations, Cursors and accessors that are associated with that structured
record will automatically translate the content into or from the Bidi format
specified in the annotations, via special cursors and accessors that wrap the
versions provided by the data exchange factory .

Problem determination
You can implement messages to accompany a range events.

Fault handling support
Through enhancements to the Service Component Architecture (SCA) and the
Adapter Foundation Classes (AFC), the WebSphere Adapter Toolkit provides fault
handling support. Fault handling allows the developer to differentiate information
technology (IT) exceptions from business processing exceptions during outbound
processing.

A fault is an exception condition that alters the normal flow of a business process.
Typically, a fault represents a predictable error that has a well-defined action.
Presenting errors as faults instead of exceptions makes it easier for you to
configure recovery processing, because fault handling does not require you to write
Java code to catch and handle an exception. Adapters created with the WebSphere
Adapter Toolkit generate several faults.

Fault handling support adheres to the DataBinding model, in that when an
exception is thrown by an adapter, a fault selector determines that it is a fault and
the fault (data) binding converts the exception to a fault business object and
returns it to the server runtime.

Fault artifacts:

To facilitate fault handling support, WebSphere Adapter Toolkit provides artifacts
that include fault classes, fault business objects, a fault selector, and a fault binding
class.

The following table shows AFC fault classes, corresponding fault business names
and fault type names. The configured fault binding and a descriptive example of
each fault can be found in the section about configuration for fault handling.

Fault Exception in AFC Corresponding Fault Name Corresponding Fault Type Name

DuplicateRecordException DUPLICATE_RECORD DuplicateRecordFault

InvalidRequestException INVALID_REQUEST InvalidRequestFault

MatchesExceededLimitException MATCHES_EXCEEDED_LIMIT MatchesExceededLimitFault

MissingDataException MISSING_DATA MissingDataFault

MultipleMatchingRecordsException MULTIPLE_MATCHING_RECORDS MultipleMatchingRecordsFault

RecordNotFoundException RECORD_NOT_FOUND RecordNotFoundFault

In addition to the fault classes, the following fault selector class and base fault
binding class are provided:
v WBIFaultSelectorImpl
v WBIFaultDataBindingImpl

A utility class named FaultBOUtil can help you define simple custom fault
business objects.

168 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

How to support fault handling:

Understand the following concepts for implementing fault handling into your
adapter.

Before you define faults, review adapter processing to determine which error
conditions can be categorized as faults, rather than as exceptions. You will likely be
able to apply at least one of the faults provided in the Adapter Foundation Classes.
Some unique conditions might be categorized as faults, but fault classes in the
Adapter Foundation Classes might not be provided for the conditions. Error
conditions from which you can recover might be candidates for fault handling. IT
exceptions, such as one time configuration issues (wrong password, incorrect
directory permissions, and so on) are not candidates for fault handling.

When naming a fault, ensure that the name describes the condition and is
independent of the technology or adapter you are using. For example, the fault
class name for an SAP IDoc record not found condition should be
RecordNotFoundFault, not SAPIDOCRecordNotfoundFault. Additionally, you might
not need to define new faults if the same semantic meaning can apply to multiple
conditions (for example, RecordNotFoundFault, FileNotFoundFault, and
ObjectNotfoundFault).

Implementing faults:

As part of the external service discovery process, you generate fault business
objects and create the method that copies them to your outbound module.

The following examples show these fault exceptions:
v DuplicateRecord
v MatchesExceedLimit

Note: To implement fault handling in the adapter, add getXMLListFunctions
method and getBFFunctions method in the extension to
WBIOutboundFunctionDescriptionImpl.

Modifying getXMLListFunctions method

Modifying getXMLListFunctions involves the following changes:
v Adding a line to invoke a new method.
v Creating the new method or add some lines to an existing method to specify the

faults
v Completing the stub to implement the FaultDataDescription class

The following example shows the first two changes:
private void getXMLListFunctions(ArrayList functionDescriptions, PropertyGroup pg,
String relativePath, JDEXMLListMetadataObject metadataObj,
WBIMetadataImportConfigurationImpl spec) throws MetadataException{
...
while(iterator.hasNext()) {
String operation = JDEESDConstants.RETRIEVEALL; /* this is only operation

supported for XML Lists */

WBIOutboundFunctionDescriptionImpl funcDesc = new WBIOutboundFunctionDescriptionImpl();
JDEXMLListQueryDataDescription queryDataDesc =(JDEXMLListQueryDataDescription)iterator.next();

//Added for Faults
addFaultsToXMLListDataDescriptionBasedOnOperationName(funcDesc,operation);

WebSphere Adapter development overview 169

//Added for Faults funcDesc.setName(operation.toLowerCase() + queryDataDesc.getBOName());
getLogUtils().trace(LogLevel.FINEST,

CLASSNAME, "getXMLListFunctions", "Setting input data description
to: " + queryDataDesc.getName().toString() + " for function: "
+ funcDesc.getName()); //$NON-NLS-1$

funcDesc.setInputDataDescription(queryDataDesc);
funcDesc.setOutputDataDescription(containerDataDesc);

JDEInteractionSpec iSpec = new JDEInteractionSpec();
WBISingleValuedPropertyImpl maxCount = (WBISingleValuedPropertyImpl)pg.getProperty(JDEESDProperties.MAXRECORDS);
if (maxCount.getValue() == null)
iSpec.setMaxRecords(((Integer) maxCount.getPropertyType().getDefaultValue()).intValue());
else
iSpec.setMaxRecords(((Integer) maxCount.getValue()).intValue());
WBISingleValuedPropertyImpl timeoutProp = (WBISingleValuedPropertyImpl)pg.getProperty(JDEESDProperties.ISPECTIMEOUT);
if (timeoutProp.getValue() != null && ((Integer) timeoutProp.getValue()).intValue()>0){
iSpec.setTimeout(((Integer) timeoutProp.getValue()).intValue());
}

iSpec.setFunctionName(operation);
funcDesc.setInteractionSpec(iSpec);
functionDescriptions.add(funcDesc);
}

...
}

private void addFaultsToXMLListDataDescriptionBasedOnOperationName(
WBIOutboundFunctionDescriptionImpl funcDesc, String operationName)
throws MetadataException {

// Define XSDs for faults supported by this adapter.
try {
// During implementation - add faults based on the operationName
// parameter. For ex an operation may have more than one fault.
// And so the below logic will have to be using conditions
// if(operationName.equals("CREATE")) {} then do this etc.

JDEXMLListFaultDataDescription fdesc1 = new JDEXMLListFaultDataDescription();
JDEXMLListFaultDataDescription fdesc2 = new JDEXMLListFaultDataDescription();

BusinessObjectDefinition bo = FaultBOUtil.createDuplicateRecordBO();
URI uri = new URI("./" + FaultBOUtil.DUPLICATE_RECORD_NAME //$NON-NLS-1$
+ EMDConstants.XSD);

fdesc1.put(FaultBOUtil.FAULT_TARGET_NS, uri, bo.serialize());
fdesc1.setGenericDataBindingClassName("com.ibm.j2ca.extension.emd.runtime.WBIFaultDataBindingImpl");
fdesc1.setFaultName(FaultBOUtil.DUPLICATE_RECORD_NAME);

bo = FaultBOUtil.createMatchesExceededLimitBO();
uri = new URI("./" + FaultBOUtil.MATCHES_EXCEEDED_LIMIT_NAME //$NON-NLS-1$
+ EMDConstants.XSD);

fdesc2.put(FaultBOUtil.FAULT_TARGET_NS, uri, bo.serialize());
fdesc2.setGenericDataBindingClassName("com.ibm.j2ca.extension.emd.runtime.WBIFaultDataBindingImpl");
fdesc2.setFaultName(FaultBOUtil.MATCHES_EXCEEDED_LIMIT_NAME);

FaultDataDescription desc[] = new FaultDataDescription[] { fdesc1,
fdesc2 };

funcDesc.setFaultSelectorClassname("com.ibm.j2ca.extension.emd.runtime.WBIFaultSelectorImpl");
funcDesc.setFaultDataDescriptions(desc);

} catch (Exception e) {
throw new MetadataException(
"Unable to create fault BO definitions " + e.getMessage(), e); //$NON-NLS-1$

}
}

The following example shows code for implementing FaultDataDescription in the
JDEXMLListFaultDataDescription class:

170 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

public class JDEXMLListFaultDataDescription implements
FaultDataDescription {

public JDEXMLListFaultDataDescription() {
super();
// TODO Auto-generated constructor stub
}

private String faultName = null;

public String getFaultName() {
// TODO Auto-generated method stub
return faultName;
}

public void setFaultName(String faultName) {
this.faultName = faultName;
}
}

Modifying getBFFunctions method

Modifying getBFFunctions involves the following changes:
v Adding a line to invoke a new method
v Creating the new method or add some lines to an existing method to specify the

faults
v Completing the stub to implement the FaultDataDescription class

The following example shows the first two changes:
private void getBFFunctions(ArrayList functionDescriptions, PropertyGroup pg,
String relativePath, ArrayList dataDescriptions) throws MetadataException {
Iterator iterator = dataDescriptions.iterator();
while(iterator.hasNext()){
JDEBFContainerDataDescription dataDesc = (JDEBFContainerDataDescription)iterator.next();
JDEBFOperationASI[] ops = dataDesc.getOperationASI();
ArrayList operations = new ArrayList();
for(int i=0; i<ops.length; i++) {
if(ops[i].getBsfnNames().length>0){
operations.add(ops[i].getName());
}
}
Iterator opIterator = operations.iterator();
while (opIterator.hasNext())
{
String operation = (String)opIterator.next();
WBIOutboundFunctionDescriptionImpl funcDesc = new WBIOutboundFunctionDescriptionImpl();

//Added for Faults
addFaultsToBFDataDescriptionBasedOnOperationName(funcDesc,operation);

//Added for Faults funcDesc.setName(operation.toLowerCase() + dataDesc.getBOName());
funcDesc.setInputDataDescription(dataDesc);
funcDesc.setOutputDataDescription(dataDesc);

JDEInteractionSpec iSpec = new JDEInteractionSpec();
iSpec.setFunctionName(operation);
funcDesc.setInteractionSpec(iSpec);
functionDescriptions.add(funcDesc);

}
}
}
private void addFaultsToBFDataDescriptionBasedOnOperationName(WBIOutboundFunctionDescriptionImpl funcDesc, String operationName)
throws MetadataException {
// Define XSDs for faults supported by this adapter.
try {
//During implementation - add faults based on the operationName parameter. For ex an operation may have more than one fault.
//And so the below logic will have to be using conditions if(operationName.equals("CREATE")) {} then do this etc.

JDEBFFaultDataDescription fdesc1 = new JDEBFFaultDataDescription();
JDEBFFaultDataDescription fdesc2 = new JDEBFFaultDataDescription();

BusinessObjectDefinition bo = FaultBOUtil.createDuplicateRecordBO();
URI uri = new URI("./" + FaultBOUtil.DUPLICATE_RECORD_NAME //$NON-NLS-1$
+ EMDConstants.XSD);

fdesc1.put(FaultBOUtil.FAULT_TARGET_NS, uri, bo.serialize());
fdesc1.setGenericDataBindingClassName("com.ibm.j2ca.extension.emd.runtime.WBIFaultDataBindingImpl");
fdesc1.setFaultName(FaultBOUtil.DUPLICATE_RECORD_NAME);

bo = FaultBOUtil.createMatchesExceededLimitBO();
uri = new URI("./" + FaultBOUtil.MATCHES_EXCEEDED_LIMIT_NAME //$NON-NLS-1$
+ EMDConstants.XSD);

fdesc2.put(FaultBOUtil.FAULT_TARGET_NS, uri, bo.serialize());

WebSphere Adapter development overview 171

fdesc2.setGenericDataBindingClassName("com.ibm.j2ca.extension.emd.runtime.WBIFaultDataBindingImpl");
fdesc2.setFaultName(FaultBOUtil.MATCHES_EXCEEDED_LIMIT_NAME);

FaultDataDescription desc[] = new FaultDataDescription[] {fdesc1, fdesc2};

funcDesc.setFaultSelectorClassname("com.ibm.j2ca.extension.emd.runtime.WBIFaultSelectorImpl");
funcDesc.setFaultDataDescriptions(desc);

} catch (Exception e) {
throw new MetadataException(
"Unable to create fault BO definitions " + e.getMessage(), e); //$NON-NLS-1$

}
}

The following example shows code for implementing FaultDataDescription in the
JDEBFFaultDataDescription class:

public class JDEBFFaultDataDescription implements
FaultDataDescription {

public JDEBFFaultDataDescription() {
super();
// TODO Auto-generated constructor stub
}

private String faultName = null;

public String getFaultName() {
// TODO Auto-generated method stub
return faultName;
}

public void setFaultName(String faultName) {
this.faultName = faultName;
}
}

Configuration for fault handling:

Adapter Foundation Classes fault names and the corresponding fault binding
names are used in the fault configuration.

A fault name is defined within each fault class. The base fault binding is
configured unless attributes are unique.

The following table includes examples of situations when an adapter might throw
each type of fault. These are examples only.

Table 4. Fault name and configured fault binding

Fault Name Configured Fault Binding

DUPLICATE_RECORD com.ibm.j2ca.extension.emd.runtime.WBIFaultDataBindingImpl

The adapter throws this fault when processing an outbound Create operation
when an error occurs because the specified file already exists in the specified
directory path.

172 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Table 4. Fault name and configured fault binding (continued)

Fault Name Configured Fault Binding

INVALID_REQUEST com.ibm.j2ca.extension.emd.runtime.WBIFaultDataBindingImpl

When input to the operation does not have the required characteristics, the
adapter throws this fault. Specific errors that can result include the
following:

v For a Create operation:

– A ChangeSummary is provided but the required child business objects
are not marked as created (per strict conventions)

– A business object is marked as deleted in the ChangeSummary
(assertion optional)

– The input business object specifies key values, but the server supports
only auto-creation

– The input business object does not contain key values, but the server
requires them

v For a Delete operation:

– A ChangeSummary is provided but the required child business objects
are not marked as deleted (per strict conventions)

– A business object is marked as created in the ChangeSummary
(assertion optional)

MATCHES_EXCEEDED_LIMIT com.ibm.j2ca.extension.emd.runtime.MatchingFaultDataBinding

When processing the processing of an RetrieveAll operation, the adapter
throws this fault if the number of records returned from a database query
exceed the maximum number of records property in the interaction
specification.

MISSING_DATA com.ibm.j2ca.extension.emd.runtime.WBIFaultDataBindingImpl

If the business object that is passed to the outbound operation does not have
all the required attributes, the adapter throws this fault.

MULTIPLE_MATCHING_RECORDS com.ibm.j2ca.extension.emd.runtime.MatchingFaultDataBinding

When processing a Retrieve operation, the adapter throws this fault if the
query returns more than one record for the specified keys.

RECORD_NOT_FOUND com.ibm.j2ca.extension.emd.runtime.WBIFaultDataBindingImpl

When processing a data retrieval operation, the adapter throws this fault if
the record is not found in the database for the keys specified. This fault can
occur for the Delete, Update, RetrieveAll, and RetrieveAll operations.

Defining custom faults:

You can define custom faults for fault handling.
v Define the fault class

Implement BaseFaultException and define additional attributes if necessary. In
defining the BaseFaultException class you can see the convention for specifying
the fault name. For example, the RecordNotFoundException fault name is
RECORD_NOT_FOUND.

v Define a fault binding
Only required if you have defined additional attributes for your fault.

v Define the fault business object

WebSphere Adapter development overview 173

You can use the FaultBOUtil to define the fault business object, as long as either
no attributes or only simple attributes are added. This should amount to a few
lines of code, See Implementing Faults for an example.

Note: The model for fault classes and fault business objects is a 1-to-1
relationship, the base fault business object cannot be used even if no additional
attributes are needed. This is because SCA does not pass back the fault name to
the client / server runtime. Instead, the fault name is resolved to the fault (BO)
type. So if you reuse fault BOs, you cannot definitively determine which fault
occurred.

Logging and tracing messages
Providing information about the runtime state of the adapter is a critical aspect of
adapter development. The Adapter Foundation Classes include the LogUtils class.
When implemented, this functionality enables developers to target information to a
variety of user roles, enabling them to filter information by levels of importance
and to generate informational events that can be monitored by and acted upon by
WebSphere Process Server.

Information about the runtime state of the adapter is invaluable not only to
support teams trying to resolve problems but also to users looking to monitor the
adapter and track its operations. For these reasons, you should focus early in your
adapter development process on what information to provide, which users to
target, and how to most efficiently and clearly communicate the information.

The JCA 1.5 specification provides minimal support for communicating
information to users. It defines a single stream to which the adapter writes any
and all information. As a result, without additional tools or support, users cannot
filter information, analyze information or, in general, easily determine what
information is of interest to them.

The New Adapter wizard generates code skeleton using Adapter Foundation
Classes to provide you with a consistent method to get the LogUtils object in your
own implementation. This is very useful when an adapter wants to record business
information or needs to track execution flow. The LogUtils class allows you to
direct information usefully to a variety of users by generating three types of
″messages″: trace, log, and event messages. Each has a distinct purpose and
conveys different information.
v The following guidelines apply to trace messages:

– They do not contain information needed by general users to resolve problems
– They encapsulate information intended for support and other development

teams
– They need not be translated
– They can be hard-coded in the adapter itself
– They feature three levels of detail: fine, finer, and finest

v The following guidelines apply to log messages:
– They encapsulate information such as warnings and errors that are targeted at

general users of the adapter
– Rather than hard-code log messages in the adapter, place them in a separate

log message file to facilitate translation into localized languages
– They feature multiple levels that users can employ to filter log messages

v The following guidelines apply to event messages:

174 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

– They provide information on the state of the adapter for use by monitor
tooling

– Represented as common base event data at run time, event messages can be
included in the extended LogUtils.log method signatures

Support for protecting sensitive user data in log and trace files

WebSphere Adapter Toolkit provides support for confidential tracing of properties.
This means that when you decide whether a property might contain potentially
sensitive data and the use a special interface when you record that information in a
log or trace message. Data recorded with the special interface is displayed in the
logs by a ″XXXX″. This functionality is most useful to customers who mainly deal
with a lot of confidential information such as banks, healthcare companies and
defense. This property is a part of the Adapter Foundation Classes, and so it can
be used by any adapters.

When a property is marked as confidential and if it needs to be logged or traced,
then you record the information using a special confidential log and trace
method provided in the logUtils will be invoked.

The following types of information are considered potentially sensitive data and
will be hidden:
v The contents of a business object
v The contents of the object key of the event record
v User names , Password, Environment and Role
v The URL used to connect to the

The following types of information are not considered potentially sensitive data
and will not be hidden:
v The contents of the event record that are not part of the event record object key.

For example, the transactionID (XID), event ID, business object name, and
event status

v Business object schemas
v Call sequences

Inserting log and trace messages

The WebSphere Adapter Toolkit automatically provides entry and exit tracing
statements to the generated code, excluding constructors and assessor methods.
The WebSphere Adapter Toolkit does not add logging and tracing statements to the
generated code for a JCA resource adapter. You will not be able to manually add
logging and tracing to the generated JCA adapter code.

You can insert log and/or trace statements into your generated IBM WebSphere
adapter code using a dialog box that collects information about the log or trace
statement to be generated and insert the appropriate code at the cursor position.

Trace messages:

Trace messages convey information that is intended for support teams and
developers. Such information includes stack dumps for exceptions and operation
logic for debugging purposes. Because trace messages are directed at the teams
that wrote or support the adapter rather than customers, trace messages need not
be translated and can, in fact, be hard-coded in the adapter.

WebSphere Adapter development overview 175

Writing a trace message

You use the trace method of the LogUtils class to generate a trace message. This
method has two signatures. One of them is informational. The other is associated
with an exception.

void trace
(Level l, String classname, String method, String msg)

void trace
(Level l, String classname, String method, String msg, Exception ex)

In an outbound or inbound scenario, to get the LogUtils object instance, in
WebSphere Integration Developer, Right click on the method and select the
following option:
v Source → Insert Trace Statement

In an outbound scenario, you can use the logger property as a consistent way to
get a log object to write log or trace messages into log or trace files.

Trace messages might contain data from the customer’s EIS. Because a customer
might be unwilling to send a trace file that contains sensitive data to a support
specialist for analysis, you can optionally use the traceConfidential method of the
LogUtils class to write confidential trace messages whose EIS-specific content is
replaced by a string of XXX’s when the customer enables the
HideConfidentialTrace property. Like the trace method, the traceConfidential
method has two signatures. One of them is informational. The other is associated
with an exception.

void traceConfidential
(Level l, String classname, String method, String msg, Object[] confidentialData)

void traceConfidential
(Level l, String classname, String method, String msg, Object[] confidentialData, Exception e)

Example of informational trace message
getLogUtils().trace

(Level.Fine, "FooAdapter", "openConnect", "Successfully connected to Foo server");

Example of exception trace message
getLogUtils().trace(Level.Finer, "FooAdapter", "closeConnection",

"While attempting to close the connection to Foo server,
Foo API reported that the server had already closed the connection
previously due to inactivity. Ignoring because connection was closed all the same",

fooAPIException);

Example of trace message for the outbound scenario
public HelloWorldConnectionFactory(ConnectionManager connMgr, WBIManagedConnectionFactory mcf)
{

super(connMgr, mcf);
getLogUtils().trace(Level.FINE,"com.ibm.helloworld.outbound.HelloWorldConnectionFactory",

"HelloWorldConnectionFactory()", "test");
}

Example of trace message for the inbound scenario
public javax.resource.cci.Record getRecordForEvent(com.ibm.j2ca.extension.eventmanagement.Event event)

throws javax.resource.ResourceException,
javax.resource.spi.CommException {

logger.trace(Level.FINE,
"com.ibm.helloworld.inbound.HelloWorldEventStoreWithXid",

176 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

"getRecordForEvent()", "test");
return null;
}
}

Example of trace message for the outbound scenario with confidential tracing
property enabled

public HelloWorldConnectionFactory(ConnectionManager connMgr, WBIManagedConnectionFactory mcf) {
super(connMgr, mcf);
getLogUtils().traceConfidential(Level.FINE,

"com.ibm.helloworld.outbound.HelloWorldConnectionFactory",
"HelloWorldConnectionFactory()", "test",
new Object[] { "str" });

}

Example of trace message for the inbound scenario with confidential tracing
property enabled

public javax.resource.cci.Record getRecordForEvent(com.ibm.j2ca.extension.eventmanagement.Event event)
throws javax.resource.ResourceException,
javax.resource.spi.CommException {
logger.traceConfidential(Level.FINE,

"com.ibm.helloworld.inbound.HelloWorldEventStoreWithXid",
"getRecordForEvent()", "test", new Object[] { "str" });

return null;
}

Note: In the previous code snippets, getLogUtils() and logger are instances of the
LogUtils class.

Trace levels

Three trace levels allow users to adjust the level of detail. Consult the guidelines
shown in the following table to determine which trace level to assign to a trace
message.

Table 5. Trace level indicators

Level Indicator Significance

Fine 1 This trace features the lowest level of detail. It includes
broad actions taken by the adapter such as establishing a
connection to the EIS, converting an event in the EIS to a
business object (key values only), processing a business
object (key values only).

Finer 2 This trace provides more detailed information on adapter
logic, including API calls to the EIS and any parameters
or return values.

Finest 3 This is the most detailed level and includes method entry,
exit, and return values. Include complete business object
dumps and all detail needed to debug problems.

Configuring log and trace detail level

Set the trace level on the package that you want to trace to all in the Change Log
Detail Levels field: For example, if the adapter package name is
com.ibm.myadapter, modify the Change Log Detail Levels pane and add
com.ibm.myadapter.* = all.″

Performance considerations

WebSphere Adapter development overview 177

Tracing assists developers and troubleshooters. Due to the significant performance
cost incurred by tracing, however, many customers disable it in production
environments. When developing or troubleshooting, it is good practice to check
whether tracing is enabled before building to generate trace messages. You can do
this by checking method LogUtils.isTraceEnabled(java.util.logging.Level)
before building the adapter. The following is an example:
if(logUtils.isTraceEnabled(Level.Fine) {

getLogUtils().trace(...);

Log messages:

Log messages convey timely information intended for consumption by customers:
warnings about potential problems, errors that have occurred and suggested fixes
for those errors, and information that is necessary or helpful to understanding how
the adapter operates.

Message files

To facilitate translation of log messages for different user groups, place all log
messages in a resource bundle file rather than hard-code them in the adapter itself.
The convention for packaging this bundle file is to embed it in the adapter RAR as
<adapter package>.emd/logMessages.properties.

The message file can contain one or more messages. Each message should be
comprised of three parts:
v Message Identifier – The message ID follows the format NNNNNmmmmS,

where NNNNN is a five-letter component prefix, mmmm is the message number,
and S identifies the message type. For example, a message identifier such as
ABCDE0001E has a component identifier of ABCDE and a message number of 0001.
The message type E tells you this is an error message. The component identifier
must be registered with IBM to avoid conflicts between products. The type
identifier should conform to one of the values specified in the Log Level table
shown below. The message number is left to you.

v Explanation – The explanation provides an in-depth description of the message.
Assume that the customer is unfamiliar with the meaning of the base message.
The explanation is the first level of help documentation for users, not a crutch
for a poorly written base message.

v User Action – For every explanation of what went wrong, there usually are
actions that customers can take to rectify the situation or to ensure that it
doesn’t happen again. The User Action field provides detailed information on
what customers can do and is very much like first-level help documentation.

The following is an example of a message file:
0001=CWYBS0001I: Adapter {1} started.
0001.explanation=The adapter has successfully initialized and is now ready to service requests.
0001.useraction=

0004=CWYBS9999E: Failed to establish connection link to server on host {1}.
0004.explanation=The adapter is unable to contact the backend application.

Business data cannot be exchanged with the backend until this issue is resolved.
0004.useraction= Check your adapter configuration and ensure that the

specified host and port match the machine and port on which the backend is listening.
If correct, check that your backend application is on-line and accepting requests.

178 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Message types

There are two message types for adapters, ADAPTER_RBUNDLE. The BASE_RBUNDLE is
reserved for the Adapter Foundation Classes. The message types are used to
distinguish between the adapter and the base classes message file. The default
value of Message Type field is ADAPTER_RBUNDLE. You use only the ADAPTER_RBUNDLE
message type because you should only access adapter message file.

Log levels

Log Levels and indicators

Level Indicator Significance

Fatal F Task cannot continue.
Component cannot function

Severe E Task cannot continue.
Component can still function.
This can also indicate an
impending fatal error,
including situations that
strongly suggest that
resources are on the verge of
being depleted.

Warning W Potential error or impending
error. This includes
conditions that indicate a
progressive failure - for
example, the potential
leaking of resources.

Audit A Significant event affecting
server state or resources

Info I General information
outlining overall task
progress.

Writing a log message

Use the log method of the LogUtils class to generate log messages. This method
accepts parameters similar to that of the trace file. Instead of providing a
hard-coded message, however, provide a key to the message from the log message
file. This log method can also take optional parameters if there are values to be
substituted in the message.

void log
(Level l, int bundleType, String classname, String method, String msgKey)

void log
(Level l, int bundleType , String classname, String method, String msgKey,
Object[] params)

For example, if you have defined parameters in your log message such as
Successfully processed business object {1} with id {2}, you would provide
values for those parameters using the argument params[].

Note: Since parameters are not translated, avoid passing hard-coded phrases as
parameters because the resulting message will be a combination of English and

WebSphere Adapter development overview 179

translated text. Values that are language-independent, such as key values or object
names, are appropriate as log message parameters.

Similarly to trace messages, parameters in a log message can contain data from the
customer’s EIS. Because a customer might be unwilling to send a log file that
contains sensitive data to a support specialist for analysis, you can optionally use
the logConfidential method of the LogUtils class to generate confidential log
messages whose EIS-specific content is replaced by a string of XXX’s when the
customer enables the HideConfidentialTrace property. Like the log method, the
logConfidential method accepts parameters similar to that of the trace file. Instead
of providing a hard-coded message, however, provide a key to the message from
the log message file. The logConfidential method can also take optional parameters
if there are values to be substituted in the message.

void logConfidential
(Level l, int bundleType, String classname, String method, String msgKey, Object[] params)

void logConfidential
(Level l, String classname, String method, String msgKey, CBEEngineData engine)

void logConfidential
(Level l, String classname, String method, String msgKey, Object[] params)

void logConfidential
(Level l, String classname, String method,String msgKey, Object[] params, CBEEngineData engineData)

In an outbound or inbound scenario, to get the LogUtils object instance, in
WebSphere Integration Developer, Right click on the method and select the
following option:
v Source → Insert Log Statement

.

Example of log message for the outbound scenario
public HelloWorldConnectionFactory(ConnectionManager connMgr, WBIManagedConnectionFactory mcf) {

super(connMgr, mcf);
getLogUtils().log(Level.INFO, LogUtilConstants.ADAPTER_RBUNDLE,

"com.ibm.helloworld.outbound.HelloWorldConnectionFactory",
"HelloWorldConnectionFactory()", "10");

}

Example of log message for the inbound scenario
public javax.resource.cci.Record getRecordForEvent(com.ibm.j2ca.extension.eventmanagement.Event event)

throws javax.resource.ResourceException,
javax.resource.spi.CommException {

logger.log(Level.INFO, LogUtilConstants.ADAPTER_RBUNDLE,
"com.ibm.helloworld.inbound.HelloWorldEventStoreWithXid",
"getRecordForEvent()", "10");

return null;
}

Example of log message for the outbound scenario with confidential tracing
property enabled

public HelloWorldConnectionFactory(ConnectionManager connMgr, WBIManagedConnectionFactory mcf) {
super(connMgr, mcf);
getLogUtils().logConfidential(Level.INFO,

LogUtilConstants.ADAPTER_RBUNDLE,
"com.ibm.helloworld.outbound.HelloWorldConnectionFactory",
"HelloWorldConnectionFactory()", "10", new Object[] { "str" });

}

180 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Example of log message for the inbound scenario with confidential tracing
property enabled

public javax.resource.cci.Record getRecordForEvent(com.ibm.j2ca.extension.eventmanagement.Event event)
throws javax.resource.ResourceException,
javax.resource.spi.CommException {
logger.logConfidential(Level.INFO, LogUtilConstants.ADAPTER_RBUNDLE,

"com.ibm.helloworld.inbound.HelloWorldEventStoreWithXid",
"getRecordForEvent()", "10", new Object[] { "test" });
return null;

}

Note: In the previous code snippets, getLogUtils() and logger are instances of the
LogUtils class.

Monitoring and measuring performance
The purpose of monitoring is to observe the progress of execution of WebSphere
Business Integration applications, and the WebSphere Business Integration system
itself, and publish the results of this observation.

Monitoring can be accomplished by:
v Using the Common Event Infrastructure (CEI), a set of modular event processing

components that provide functions to capture information about significant
system or business occurrences.

v Using the Performance monitoring infrastructure (PMI) to collect data, such as
average response time and total number of requests, from various components
in a server runtime environment, and organizes the data into a tree structure.

v Using Application response measurement (ARM) to monitor the availability and
performance of applications.

Common Event Infrastructure (CEI):

The Common Event Infrastructure (CEI) is a set of modular event processing
components that provide functions to capture information about significant system
or business occurrences.

WebSphere Process Server includes the Common Event Infrastructure technology,
which adapters use to create, transmit, persist and distribute events.

Note: If an adapter is running on a broker that does not use the IBM CEI
technology but instead uses its own event monitoring technology; that broker can
also plugin its monitoring infrastructure with the adapters by implementing the
interfaces described in the sections that follow and by optionally using schema
definitions (.xsd and .mes files).

EventSourceContext

The EventSourceContext interface provides the context for a monitored component
and is the starting point for the adapters. The EventSourceContext interface
provides APIs to obtain event source, which is an application or component that
submits an event creation request to CEI. Each event source defines a set of event
points, which represent the points where CEI events are triggered.

/**
* Provides the context for a monitored component.
*/

package com.ibm.j2ca.extension.monitoring.CEI;

WebSphere Adapter development overview 181

public interface EventSourceContext
{
/**

* Returns an event source for a monitored element.
* @param elementKind an artifact kind that can be monitored e.g ResourceAdapter.
* @param elementName the name of the monitored element
* @return the event source object that encapsulates the element to be monitored
*/

EventSource getEventSource(String elementKind, String elementName);

/**
* Creates an event source for a monitored element. The usage is similar to
* java.util.logging.Logger.
* @param componentTypeQName : The element type can be specified using the element
* type from
* a schema which defines the structure/syntax of the artifact itself
* e.g.http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
* @param componentQName the name of the component ,
* e.g http://www.ibm.com/j2ca/ResourceAdapter:Customer"
* @return the event source factory for the component to be monitored
*/

public interface Factory{
EventSourceContext create(String componentTypeQName, String componentQName);
}

}

EventSource

Event Sources are applications or components that submit event creation requests
to CEI. Each monitorable element defines an event source an example of event
source is an adapter. An event source is used to retrieve event points in order to
send monitoring events to a CEI logger.

package com.ibm.j2ca.extension.monitoring.CEI;

/**
* An event source represents a monitoarable element kind such as an adapter....
* Each monitorable element defines an event source, Each event source defines a
* set of component-element specific event points. An event source object is used
* to retrieve event points to fire monitoring events
*/

public interface EventSource
{

/**
* returns an EventPoint for the monitored element
* @param eventPointName a valid event nature for this event
*/
public EventPoint getEventPoint(String eventPointName);

}

EventPoint

Every monitorable component needs to define the event points. Each event point
defines an event and the data or payload associated with that event. The
EventPoint is used to fire monitoring events. The client of an event point needs to
know the payload of the fired events. Where the payload of an event can be
specified in an event catalog for each component.

package com.ibm.j2ca.extension.monitoring.CEI;
/**
* Every monitorable component needs to defines the event points. Each event point
* defines an event and the data/payload associated with that event. The EventPoint
* is used to fire monitoring events.

182 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

* The client of an event point needs to know the payload of the fired events.
*/
public interface EventPoint
{

/**
*return the name of the event point
*/

String getName();

/**
* Checks if an event needs to be fired for this event point. This method minimizes the
* overhead of inactive monitoring
* points. returns: true if this event point fires monitoring events.

*/

boolean isEnabled();

/**
* Fires a monitoring event.
* @param name the name of the payload data element.
* @param value the value of the payload data element
*/

void fire(String name, Object value);

/**
* Fires a monitoring event,
* it is a convenient method for payloads with two data elements.

*/

void fire(String firstName, String secondName, Object firstValue, Object secondValue);

/**
* Fires a monitoring event
* It is a convenient method for payloads with list of data elements.
*/
void fire(String[] names, Object[] values);

}

Unique Id

The Unique Id interface can be used to uniquely identify event points:
/**
* Every monitorable component needs to defines the event points.
* Each event point defines
* an event and the data/payload associated with that event. The EventPoint is
* used to fire monitoring events.
* The client of an event point needs to know the payload of the events.h
*/

public interface AdapterContext
{
public String getUniqueId();

}

Example of the schema definition files

1. Monitorable element schema (.mes file):

Monitorable element schema can be used to define element types that can be
logged into the CEI database (Polling, InboundEventDelivery, Outbound etc)
and it can also define natures that are available for each element type (entry,
exit, failed, polling etc).

WebSphere Adapter development overview 183

<?xml version="1.0" encoding="UTF-8"?>
<EventNaturesSpec name="EventNatures" targetNamespace="http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
xmlns="http://www.ibm.com/xmlns/prod/websphere/monitoring/6.1/mes"
xmlns:eis="http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter" shortName="ResourceAdapter">

<Property>CEI</Property>
<ElementKind name="Polling">
<EventNature name="STARTED" eventName="eis:WBI.JCAAdapter.Polling.STARTED" />
<EventNature name="STOPPED" eventName="eis:WBI.JCAAdapter.Polling.STOPPED" />
</ElementKind>
</EventNaturesSpec>

2. Xsd schema (.xsd):

Xsd schema can be used to provide CEI specific of each data elements and it
also defines the types of events that can be emitted for the data elements.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
xmlns:eis="http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
xmlns:wbi="http://www.ibm.com/xmlns/prod/websphere/monitoring/6.1">
<import namespace="http://www.ibm.com/xmlns/prod/websphere/monitoring/6.1" schemaLocation="WBIEvent.xsd" />
<complexType name="WBI.JCAAdapter.Polling.STARTED">
<complexContent>
<extension base="wbi:WBIMonitoringEvent">
<sequence>
<element name="PollFrequency" type="int" minOccurs="1" maxOccurs="1" />
<element name="PollQuantity" type="int" minOccurs="1" maxOccurs="1" />
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="WBI.JCAAdapter.Polling.STOPPED">
<complexContent>
<extension base="wbi:WBIMonitoringEvent"></extension>
</complexContent>
</complexType>

</schema>

Extending Common Event Infrastructure logging on WebSphere Process Server:

You can extend CEI logging to WebSphere Process Server by adding custom
events.

Example of how to log an event

The following example describes how to log an event named Polling, when the
event action is Started and you want to log two integers values for this event in
the CEI database.
1. Monitorable Element Schema “.mes” file changes

Defines element types that you want to monitor (Polling for example) and it
also defines natures that are available for each element type (STARTED).

<?xml version="1.0" encoding="UTF-8"?>
<EventNaturesSpec name="EventNatures" targetNamespace=
"http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
xmlns="http://www.ibm.com/xmlns/prod/websphere/monitoring/6.1/mes"
xmlns:eis="http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
shortName="ResourceAdapter">

<Property>CEI</Property>
<ElementKind name="Polling">
<EventNature name="STARTED" eventName="eis:WBI.JCAAdapter.Polling.STARTED" />
</ElementKind>
</EventNaturesSpec>

2. “.xsd” file changes
The .xsd event schema file provides monitoring that is specific to each data
element, and it also defines the types of events that can be emitted for the data
elements. The following is an example of xsd event schema content::

<?xml version="1.0" encoding="UTF-8"?>"
<EventSpec xmlns="http://www.ibm.com/xmlns/prod/websphere/monitoring/6.0.0/es"
name="Events"

184 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

targetNamespace="http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
xmlns:er="http://www.ibm.com/xmlns/prod/websphere/recovery/6.0.0/es/eventpayloads"
>
<Event name="ResourceAdapter.Polling.STARTED" situationType=
"STATUS" situationCategory="ReportSituation"
reasoningScope="EXTERNAL" parent="WBI.MonitoringEvent">
<Payload>
<Data name="PollFrequency" type="int" minOccurs="0" maxOccurs="1"/>
<Data name="PollQuantity" type="int" minOccurs="0" maxOccurs="1"/>
</Payload>
</Event>

3. Invoke Events
import com.ibm.j2ca.extension.logging.internal.cbe.EngineData;
...

CBEEngineData engineData = CBEEngineDataFactory.getEngineDataForEventType("Polling");
//This will instantiate the EngineData class for user defined event e.g "Polling".
engineData.setValue("EventAction","STARTED");
//This will set the user defined action e.g. "Started"
engineData.setValue("PollFrequency", activationSpec.getPollPeriod());
//This will set the user defined arg
engineData.setValue("PollQuantity", activationSpec.getPollQuantity());
//This will set the user defined arg

Performance monitoring infrastructure (PMI) for resource adapters:

The Performance Monitoring Infrastructure (PMI) is the underlying framework in
WebSphere Application Server that gathers performance data from various runtime
resources such as adapters.

The purpose of monitoring is to observe the progress of execution of WebSphere
Business Integration applications, and the WebSphere Business Integration system
itself, and publish the results of this observation. By using Performance Monitoring
Infrastructure (PMI), you can observe the progress of adapters running in the
server runtime environment and other business integration applications, and
publish the results. PMI collects data, such as average response time and total
number of requests, from various components in the server, and organizes the data
into a tree structure. You can observe data through the Tivoli Performance Viewer,
a graphical monitoring tool that is included with WebSphere Application Server..

You can monitor the performance of the adapters by having PMI collect data at the
following points:
v

v InboundEventRetrieval:
Will monitor performance of retrieving events from the EIS. It enables
monitoring of entering, exiting, failing of the EventManager.getEvents() method.

v InboundEventDelivery:
Will monitor the performance when resource adapter deliver data to the
endpoint, which conveys changes in or general information from the EIS. It
enables monitoring of entering, exiting, failing of the EventSender.doSendEvent()
method.

v Outbound:
Will monitor the performance of outbound processing of a resource adapter. It
enables monitoring of entering, exiting, failing of the WBIInteraction.execute()
method.

Extending PMI on WebSphere Process Server:

To add a user-defined element or method into the list of monitorable components
you need to modify code and schema files.

WebSphere Adapter development overview 185

Purpose

1. Monitorable Element Schema (.mes) file changes
Defines the element type within an adapter where monitoring can be attached.
The element type is specified using the Qname of the element type from the
schema, which defines the structure of the artifact itself. It also defines the
natures (ENTRY, EXIT, FAILURE) that are available for that type of element.
The sample below declares how the monitors can be attached to myOutbound.
For example myOutbound method can emit event at ENTRY, EXIT or FAILURE
event points.
<?xml version="1.0" encoding="UTF-8"?>
<EventNaturesSpec
name="EventNatures"
targetNamespace=
"http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
xmlns=
"http://www.ibm.com/xmlns/prod/websphere/monitoring/6.0.0/mes"
shortName="JCAAdapter">

<Property>CEI</Property>
<ElementKind name="myOutbound">
<EventNature name="ENTRY" eventName="eis:WBI.JCAAdapter.myOutbound.ENTRY" />
<EventNature name="EXIT" eventName="eis:WBI.JCAAdapter.myOutbound.EXIT" />
<EventNature name="FAILURE" eventName="eis:WBI.JCAAdapter.myOutbound.FAILURE" />
</ElementKind>

2. “.xsd” file changes
The xsd event schema file provides monitoring specific of each data elements
and it defines the types of events, payload or extended element for each event
type that can be emitted for the data elements. Content of schema looks like
following:
<?xml version="1.0" encoding="UTF-8"?>
<EventSpec xmlns=
"http://www.ibm.com/xmlns/prod/websphere/monitoring/6.0.0/es"
name="Events"

targetNamespace=
"http://www.ibm.com/xmlns/prod/websphere/scdl/eis/6.0.0:JCAAdapter"
xmlns:er=
"http://www.ibm.com/xmlns/prod/websphere/recovery/6.0.0/es/eventpayloads"
>
<complexType name="WBI.JCAAdapter.myOutbound.ENTRY">

<complexContent>
<extension base="wbi:WBIMonitoringEvent" />
</complexContent>
</complexType>

<complexType name="WBI.JCAAdapter.myOutbound.EXIT">
<complexContent>
<extension base="wbi:WBIMonitoringEvent" />
</complexContent>
</complexType>

<complexType name="WBI.JCAAdapter.myOutbound.FAILURE">
<complexContent>
<extension base="wbi:WBIMonitoringEvent">
<sequence>
<element name="FailureReason" type="string" />
</sequence>
</extension>
</complexContent>
</complexType>

</schema>

3. Invoke PMI:
To invoke PMI statistics around a method named myOutbound, you would do
the following:
a. Import com.ibm.j2ca.extension.monitoring.CEI.EventPoint;
b. Define a unique PMI event point name.

For example String eventName = uniqueAdapterID + “##” +
″myOutbound″;

c. Get an instance of EventPoint:
for each eventAction ENTRY, EXIT, FAILURE. EventPoint ep =
(EventPoint)(EventPoints.INSTANCE.getEventPoints(eventName,eventAction))

186 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

d. If eventPoint is enabled, then fire event for Entry, Exit and Failure is
invoked.
Entry event is fired in the beginning of the method call, exit event is fired in
the end of the method call and failure event is fired in case of exception.
For example we can invoke failure event by following API call.
if(ep.isEnabled()) {

ep.fire(new String[]{"FailureReason"},
new Object[]{ex.toString()});

}

Extending PMI on WebSphere Application Server:

Extending PMI on WebSphere Application Server does not require you to add
content into schema files (.xsd and .mes files).

Invoke PMI

Invoking PMI statistics on WebSphere Application Server can be done by following
the steps listed below.

Note: The steps below describe how to invoke PMI statistics around a method
named myOutbound.
1. Import com.ibm.j2ca.extension.monitoring.CEI.EventPoint;
2. Define a unique PMI event point name.

For example String eventName = uniqueAdapterID + "##" + "myOutbound";
3. 3. Get an instance of EventPoint: for each each eventAction ENTRY, EXIT,

FAILURE.
EventPoint ep =
(EventPoint)(EventPoints.INSTANCE.getEventPoints(eventName,eventAction))

4. 4. If eventPoint is enabled fire event for Entry, Exit and Failure.
Entry event is fired in the beginning of the method call, exit event is fired in
the end of the method call and failure event is fired in case of exception. For
example we can invoke failure event by following API call:
if(ep.isEnabled()) {

ep.fire(new String[]{"FailureReason"}, new Object[]{ex.toString()});
}

Application response measurement (ARM):

Application response measurement (ARM), an API jointly developed by an
industry partnership, monitors the availability and performance of applications.
ARM is an approved standard of The Open Group.

To ensure that requests are performing as expected in a multi-tiered heterogeneous
server environment, you must be able to identify requests based on business
importance. In addition, you must be able to track the performance of those
requests across server and subsystem boundaries, and manage the underlying
physical and network resources used to achieve specified performance goals.

You can collect this performance data by using versions of middleware that have
been instrumented with the Application Response Measurement (ARM) standard.

Combining ARM calls within your application with an ARM agent, users of your
application will be able to answer questions like the following:

WebSphere Adapter development overview 187

v Is a transaction (and the application) hung, or are transactions failing?
v What is the response time?
v Are service level commitments being met?
v Who uses the application and how many of each transaction are used?

The resource adapters are instrumented with the Application Response
Measurement API, an API that allows adapters to collect and manage transaction
end-to-end response time and volumetric information.

The adapters can participate in IBM Tivoli Monitoring for Transaction Performance,
by allowing collection and review of data concerning transaction metrics.

The resource adapters using ARM define transactions at following three points:
v InboundEventRetrieval:

Will measure response time of retrieving events from the EIS. It measures
response time of the EventManager.getEvents() method.

v InboundEventDelivery:
Will measure response time when resource adapter deliver data to the endpoint,
which conveys changes in or general information from the EIS. It measures the
response time of the EventSender.doSendEvent() method.

v Outbound:
Will measure the response time of outbound processing of a resource adapter. It
measures the response time of the WBIInteraction.execute() method.

An ARM agent, such as Tivoli Composite Application Manager for Response Time
Tracking, can perform response time collection and analysis.

To enable/extend ARM, different brokers need to implement:
armTransactionFactoryName() method found in com.ibm.j2c.monitoring.ARM
AdapterArmTransactionFactory class. This transaction factory creates all objects
that defined in the org.opengroup.arm40.transaction package.

ARM interface
/**
* ArmTransactionFactory provides methods to create instances of the classes in the org.opengroup.arm40.transaction package.
**/
package com.ibm.j2ca.extension.monitoring.ARM;

public interface AdapterARMTransactionFactory {
public String armTransactionFactoryName();
}

Extending application response measurement (ARM) events using the InteractionMetrics:

The WebSphere container provides InteractionMetrics interface that introduces
the capability for any resource adapter to participate in reporting its usage time in
a request and have that time reported by the various request metrics reporting
tools available for WebSphere.

Tracking interaction metrics

The WebSphere ConnectionEventListener has implemented this class.

WebSphere keeps an EventListener associated with each ManagedConnection to
track the interaction time on a per ManagedConnection basis to gather usage time

188 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

statistics and data for each ManagedConnection, which can be used to assess and
troubleshoot performance related problems.

In order for resource adapters to participate in various WebSphere RequestMetric
tools for outbound, diagnostic tools, etc, you will need to follow these steps:
1. Import com.ibm.websphere.j2c.*;
2. Get interaction metrics listener by using WBIManagedConnection classes’

getInteractionListener() method or by calling WBIInteraction classes’
getInteractionListener() method.

3. At the beginning of each method to report statics for, call
isInteractionMetricsEnabled, check whether the listener is enabled.
listener.isInteractionMetricsEnabled(); If it returns false, do nothing for the rest
of this request.

4. If isInteractionMetricsEnabled returns true, call preInteraction in the beginning
of a method where you want to start ARM Object ctx = listener.preInteraction();

5. Before sending the request to the downstream EIS process, call getCorrelator
and attach the correlator with the request so that the downstream EIS process
can get the correlator. Obtain correlation byte[] armCorBytes =
listener.getCorrelator();

6. In the end of method you need to collect the ARM statistics by calling
postInteraction(ctx, InteractionMetrics.RM_ARM_GOOD, ispec);

7. In case of exception call postInteraction(ctx,
InteractionMetrics.RM_ARM_FAILED, ispec);

For details about interactionMetrics API please see: l

Extending ARM events using the Open Group API:

Use following reference information to make you component ARM-enabled using
the Open Group API.

Application response measurement (ARM) documentation

Use following links to access the information on how to make you component
ARM enabled using the Open Group API.:
v Application Response Measurement (ARM) Instrumentation Guide.
v ARM 4.0 Java APIs.
v ARM fundamentals and downloads.

First failure data capture (FFDC):

First failure data capture (FFDC) provides the instrumentation for exception
handlers (catch blocks) to record exceptions that are thrown by a component.

To provide FFDC for your component, exception handlers can be instrumented by
defining an aspect, which determines the packages, classes, methods, and
exceptions types that will be supported by FFDC.

Users extend the abstract FFDCSupport aspect that captures the required context,
such as method name and exception object, automatically. No additional
configuration is required because the data provided by the aspect is the same data
that would be provided from a hand-coded invocation.

WebSphere Adapter development overview 189

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.javadoc.doc/public_html/spi/com/ibm/websphere/j2c/InteractionMetrics.htm
http://publib.boulder.ibm.com/tividd/td/ITMFTP/SC32-9412-00/en_US/HTML/arm.htm
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=/eicaw/javachptr.htm
http://www.opengroup.org/management/arm/

FFDC processing overview

Instead of explicitly instrumenting catch blocks by calling FFDC directly, either
manually or by using a tool, you can write a simple aspect using the AspectJ
language, which encapsulates the FFDC policy for your code.

The FFDCSupport aspect is abstract. Like an abstract class, FFDCSupport cannot be
instantiated and defers some of its implementation to a sub-aspect. It follows the
standard library aspect pattern of declaring an abstract pointcut for which you
must declare a concrete implementation. This concrete implementation of the
pointcut can use the simple AspectJ scoping pointcut designators (PCD) such as
within() and withincode() to determine the packages, classes and methods to be
included in the FFDC policy.

FFDC programming examples

The following examples assume a certain familiarity with the AspectJ language
(see http://eclipse.org/aspectj/). In most cases a user of the FFDCSupport aspect
will require knowledge of only a small subset of the AspectJ syntax. In particular
they should know how to define a concrete aspect by extending an abstract one
and how to declare a concrete pointcut typically using simple scoping primitive
pointcuts.

Figure 1 illustrates the simple aspect Example_1 that adds FFDC to all classes in
the com.foo package. The example illustrates the following processing:
1. On line 1, the FFDCSupport aspect is imported
2. On line 3, the FFDCSupport aspect is extended and made concrete in a similar

way to a Java class.
3. On line 5, the inherited abstract pointcut ffdcScope()\ is made concrete.

This is done using the within() pointcut designator (PCD) and “*” wildcard
that results in FFDC for all classes in the com.foo package. For example,
com.foo.Bar.

import com.ibm.websphere.ffdc.FFDCSupport;

public aspect Example_1 extends FFDCSupport {

protected pointcut ffdcScope () :
within(com.foo.*);

}

Figure 7. Add FFDC to the com.foo package

import com.ibm.websphere.ffdc.FFDCSupport;

public aspect Example_2 extends FFDCSupport {

protected pointcut ffdcScope () :
within(com.foo..*);

}

Figure 2 illustrates aspect Example_2, which differs from Example_1 . Notice line 13, where the wildcard includes
″double dots″ (..) in the within() PCD, which means the includes all classes in the com.foo package and sub-packages.
For example, com.foo.impl.Bar.
Figure 8. Add FFDC to com.foo package and all sub-packages

190 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

http://eclipse.org/aspectj/

If you use the FFDCSupport aspect, you can ensure a consistent FFDC policy for
your application by adding declare warning or error advice to your aspects While this
capability is not explicitly provided by the FFDCSupport aspect, you can leverage
the use of AspectJ and follow a standard pattern of enforcing a policy
implemented using an aspect with compiler warnings or errors.

In Figure 6, aspect Example_6 illustrates how to prevent direct use of the FFDC API
or undesired dumping of exception messages and stack traces to the console. The
declare warning statements on lines 51 and 57 instruct the AspectJ compiler to
issue warnings during weaving if join points are matched by the accompanying
pointcuts on lines 48 and 54 respectively.

The statements are only evaluated during compilation and have no impact on the
runtime.

import com.ibm.websphere.ffdc.FFDCSupport;

public aspect Example_3 extends FFDCSupport {

protected pointcut ffdcScope () :
within(com.foo.*)
&& !within(com.foo.Goo);

}

In Figure 3 aspect Example_3 has the same effect as Example_1 except it excludes FFDC for class com.foo.Goo by
using the && and ! operators to form a pointcut expression.
Figure 9. Add FFDC to all classes in the com.foo package excluding com.foo.Goo

import com.ibm.websphere.ffdc.FFDCSupport;

public aspect Example_3 extends FFDCSupport {

protected pointcut ffdcScope () :
within(com.foo.*)
&& !withincode(* com.foo.Goo.aMethod(..));

}

In Figure 4, aspect Example_4 is also similar to Example_1, however FFDC is excluded from a particular method on
line 30 using the withincode() PCD.
Figure 10. Add FFDC to the com.foo package but exclude aMethod

import com.ibm.websphere.ffdc.FFDCSupport;

public aspect Example_4 extends FFDCSupport {

protected pointcut ffdcScope () :
within(com.foo.*)
&& !args(ClassNotFoundException);

}

In Figure 5 aspect Example_5 illustrates how to account for a programming by exception, where certain exceptions are
not considered to be a failure and should not be reported. In the example, the handling of ClassNotFoundException
will not be reported to FFDC. The args() PCD on line 39 selects a join points based on contextual information in this
case the exception passed to the handler join point.
Figure 11. Add FFDC to the com.foo package but exclude catch blocks for ClassNotFoundException handling

WebSphere Adapter development overview 191

When using FFDCSupport aspect you can control the data gathered. Two template
methods getSourceId and getProbeId are provided to you for this purpose. For
example, you may want to limit the length of the source ID strings. In Figure 7,
aspect Example_7 illustrates how to override the getSourceId method and return a
short name.

You can use FFDC to control how your classes are introspected by implementing
the introspectSelf method. Class Person in Figure 8 illustrates how you can hide
a sensitive field (in this example a password is hidden).

import com.ibm.websphere.ffdc.FFDCSupport;

public aspect Example_6 extends FFDCSupport {

protected pointcut ffdcScope () : within(com.foo.*);

public pointcut ffdcCall () : call(* com.ibm.websphere.ffdc..*(..));

declare warning : ffdcCall() && ffdcScope() :
"Don't call FFDC directly. Use FFDCSupport aspect.";

public pointcut dumpException () : call(void Throwable.printStackTrace(..));

declare warning : dumpException() && ffdcScope() :
"Don't dump exceptions to console. Use FFDCSupport aspect.";

}

Figure 12. Warn user about calling FFDC directly or dumping stack traces

import com.ibm.websphere.ffdc.FFDCSupport;

import org.aspectj.lang.JoinPoint;

public aspect Example_7 extends FFDCSupport {

protected pointcut ffdcScope () :
within(com.foo.*);

protected String getSourceId (JoinPoint.StaticPart ejp) {
String name = ejp.getSignature().getName();
return name;

}

}

Figure 13. Override default source ID generation to create short name

private class Person {
private String userid = "USER";
private String password = "PASSW0RD";

public String[] introspectSelf () {
String[] self = { "userid=" + userid, "password=XXXXXXXX" };

return self;
}

}
Hide password field of Person class from introspection.

Figure 14. How to hide a sensitive field in this case a password

192 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Exception messages
Exception messages, like trace messages, convey information about problems. The
difference is that exception messages are tailored more directly to support teams
familiar with adapter source code, and therefore need not be translated.

Treat text included in exception messages as you would text for trace messages. In
general, exception messages are not directed at general users but rather at support
teams who have the ability to investigate adapter source code. For that reason,
exception messages need not be translated and can be hard-coded. If an exception
is thrown and the customer must be informed of the problem, use an appropriate
log message, which can be translated, to inform the customer; refrain from simply
printing out the contents of the exception.

When implementing an adapter exception message, do the following:
v Define subclasses of ResourceException where appropriate and include relevant

properties on these implementations
v Raise the exception with a message that can be hard-coded in English.
v Print the stack trace of the exception using the trace API. This allows support

teams to see all exception details.
v When appropriate, the exception messages raised should have a corresponding

high level message in the LogMessages.properties file. The developer should log
this high-level message after raising the exception so that general users can see
an explanation of the error in their native language.

Changing the Java logging API settings
To change the Java logging API settings, you modify a permission in the adapter
deployment descriptor.

The following permission must be added to the adapter deployment descriptor,
represented as the file ra.xml in the RAR package:
permission java.util.logging.LoggingPermission "control";

In the ra.xml file, this permission is as follows:
<security-permission>

<security-permission-spec>
grant {

permission java.util.logging.LoggingPermission "control";
};

<security-permission-spec>
<security-permission>

Validating the code
Validate your adapter implementation by unit testing it outside of a JCA container
(unmanaged testing mode). You can then deploy to the target runtime server and
test instances of the adapter (managed testing mode).

Unmanaged and managed testing modes are not mutually exclusive. A thorough
testing regime typically involves unit testing to debug and refine adapter
components prior to managed testing in the target environment.

Testing enterprise metadata discovery (EMD) of the adapter
Testing the EMD implementation means testing if the adapter can connect to EIS
and discover services from an existing metadata repository or is able to build the
appropriate interactions with the EIS by generating the required artifacts.

WebSphere Adapter development overview 193

To test the enterprise metadata discovery (EMD) implementation for the developed
resource adapter, complete the following steps:
1. From the IBM WebSphere Adapters Foundation Classes library, copy the

following three dependent jars into the connectorModule connector project:
v commonj.connector.jar
v CWYBS_AdapterFoundation.jar
v DESPI.jar

Displaying the dependent jars

Note: Alternatively, if you want to export the jars as RAR, you can use the
AFCUtility tool to place these three jars into the RAR. This tool is available as
WAT plug-in from /plugins/com.ibm.j2ca.wat.afc_6.2.0/AFCUtility.

2. In the WebSphere Integration Developer window, click Go to the Business
Integration perspective.

3. Right-click inside the Business Integration section of the WebSphere Integration
Developer window.

4. Type in a new Module Name in the New Module window. Click Finish.
5. Open the external service by clicking the File->New->External Service.
6. In the External service window, expand Adapters and select the adapter name

entered in the ra.xml file.

Note: You can enter the adapter name in the ra.xml file using the Resource
Adapter Deployment Descriptor editor.

7. Click through Next to open the last External service window. Click Browse and
select the module created in Step 4 to generate the required artifacts.

Note: If you do not add the dependency jars to the connectorModule, the
following error might display during the deployment:
java.lang.NoClassDefFoundError: com.ibm.j2ca.base.WBIResourceAdapter

Testing the adapter in unmanaged mode
Testing in unmanaged mode means unit testing the adapter implementation in
your development environment. You can unit test your adapter with JUnit, a
widely used and reliable open source framework for regression testing.

194 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

JUnit: an open source framework for unit testing
JUnit is becoming the standard tool for unit testing in Java development
environments. JUnit allows you to quickly and easily integrate automated
regression testing into your coding and build processes.

With JUnit, an open source unit test framework, you can write and run tests for
your adapter implementation. You use a simple setup() method to prepare each
component for testing. Each test method can contain one or more assertions. The
assertions test actual results against expected results. Using JUnit assertions, you
can achieve a high degree of code quality and responsiveness to requirements
outside of the adapter runtime environment.

A simple JUnit test case resembles the following:
public class MyTest extends TestCase {

protected void setUp() throws Exception {
super.setUp();

}
public testSomething() throws Exception{

String result = classUnderTest.executeSomething();
assertEquals(result,"Something");

}
}

The setUp() method is called once before each test method. The purpose of the
setUp() method is to prepare the component for the test. You can create several
test methods; each must begin with the word test and contain at least one
assertion.

The next section shows how to use the setUp() method to prepare your adapter
for testing, and how to use the test methods to execute functions. Because the goal
is to test the adapter in unmanaged mode, you must run the adapter outside of a
JCA container.

Validating the adapter in unmanaged mode–testing the adapter as part of
development, gradually building the test case suite to address requirements–is a
first step. This prepares the adapter for managed testing in a runtime environment.
It also yields useful artifacts: the test case suite remains useful after unit testing
because changes in code that break the functionality are tracked, alerting you when
testing future iterations inside the development environment.

For more information about JUnit, see http://junit.org.

Developing JUnit tests
You unit test outbound and inbound processing by creating and specifying JCA
contracts and operations. You then test and compare data before and after applying
the tests. The TwineBall sample helps illustrate these steps.

Outbound

The J2EE Connector Architecture (JCA) specification defines an unmanaged mode
for running adapters. This means running the adapter outside of a JCA container
and in process with the caller. This is the environment for developing JUnit tests.

Through a series of common client interface (CCI) and service provider interface
(SPI) calls, you can force the adapter to perform an operation you want to test.
First you must create instances of ManagedConnectionFactory and ResourceAdapter
and then set the appropriate properties in the client code.

WebSphere Adapter development overview 195

http://junit.org

Your adapter may or may not be dependant on ″live″ data inside the EIS. If so,
you must either return the data to a known state after every test, or create a mock
implementation of the EIS API so that EIS data remains untouched.

setUp()

In the setup method for outbound, perform the following step:
1. Load any schemas (if necessary)

Test

When you have completed the steps for setting up the test, you are ready to call
the CCI interaction and validate the result. The procedure below creates an object,
retrieves it, and validates its content.

In the test method, you will need to do the following things:

Note: These tasks can be delegated to helper methods
1. Create the data and metadata you will be working with (JavaBean, SDO, or

other format).
2. Create a DataExchangeFactory for this data type, set the data as the bound

object
3. Create a StructuredRecord and initialize it, with the Data Exchange Factory and

the metadata
4. Invoke the adapter’s interaction.execute() using JCA CCI semantics
5. Inspect the result of the output, by getting the bound object of the data

exchange factory of the output record.
1. Create a new WBIRecord.
2. Create a business object, populate it with data, and place it in WBIRecord.
3. Set the appropriate verb in the business object.
4. Call the interaction, capturing the output.
5. Perform the assertions, which include the following:

v Retrieving the object
v Validating the retrieved object against the original data

For a detailed and coded example of this procedure, see
TwineBallInteractionTest.

Inbound

In contrast to the outbound direction, inbound communication is not defined for
unmanaged operation. To test the adapter’s inbound capability outside of a JCA
container, you must implement some of the JCA container contracts. These include
the following:
v BootstrapContext – To obtain a reference to a work manager and a timer
v InboundListener and MessageEndpoint – For the listener client
v MessageEndpointFactory – To create endpoints
v WorkManager – To create work instances
v Work – To map to threads

For a detailed and coded example of these contracts, see the TwineBall sample.

196 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

setUp()

The setUp() method for inbound is very similar to that for outbound. You may,
however, not need an outbound connection through the adapter. Accordingly, you
need only perform the following tasks:
1. Create an adapter instance and set its properties
2. Start the resource adapter.

Test

The test methods for inbound must do the following:
1. Prepare the data inside the EIS. In a polling adapter, this would cause the

triggers to fire, populating the event table.
2. Create a MockEndpointFactory, and an ActivationSpecWithXid.
3. Call endpointActivation() on the adapter.
4. Wait for the event to arrive.
5. Assert the correctness of the data after it is sent to the endpoint.

Note: You can group your inbound and outbound tests into a single suite, and run
them at once, getting instant feedback in your development environment.

For a detailed and coded example of the procedures described above, see the
TwineBall sample that comes with the WebSphere Adapter Toolkit.

Build and execute TwineBall JUnit

To build and execute TwineBalll JUnit, perform the following steps:
1. Import in the Twineball, or KiteString source code from the samples gallery.
2. Find the testcase you want to run. For example, choose AllTest.java in the

com.ibm.j2ca.sample.twineball package in the tests folder.
3. Right-click on the class and choose Run As → JUnit Test.

See the results after the JUnit run. The color green indicates that the test case was
run successfully.

Testing the adapter in managed mode
Testing the adapter in managed mode means testing adapter instances on
WebSphere Process Server. This type of testing, in contrast to testing in unmanaged
mode, more closely reflects the production environment that customers encounter.

Before testing your adapter implementation in managed mode, you must export a
resource adapter EAR file to WebSphere Process Server.

Running tests in managed mode help uncover problems your adapter might have
with the following services provided by WebSphere Process Server and the
Adapter Foundation Classes:
v Connection management
v Transaction management
v Event management

WebSphere Adapter development overview 197

For information on testing the adapter in managed mode in WebSphere
Application Server, see Validating code with Rational Application Developer /
Websphere Application Server.

Installing the test client
To test your adapter in a runtime environment, you must first install a test client
on the target WebSphere Process Server.
1. Install the test client, TestController.ear, on the target WebSphere Process

Server. Locate the file <WebSphere Integration Developer>\eclipse\plugins\
com.ibm.wbit.comptest.core\TestController.ear on your WebSphere
Integration Developer system (this file was installed with WebSphere Adapter
Toolkit). Follow the steps in “Creating and exporting a resource adapter” on
page 206.

2. Apply the CompTest patch to the target WebSphere Process Server if the server
is not installed on the same machine as WebSphere Integration Developer. If
you installed the test client on a machine that is not running WebSphere
Integration Developer, (for example on an AIX, HP-UX or Solaris workstation
that is running WebSphere Process Server), then you must install this patch.
The patch is located on the WebSphere Process Server ifix website and contains
two JAR files: CompTestCommon.jar and CompTestController.jar. To install
them, unzip the patch to the root directory of WebSphere Process Server.

Testing outbound functionality
You test outbound processing by configuring an adapter instance, selecting test
parameters, and optionally executing the test in debug mode to pause at
breakpoints.

After you have created and exported your adapter to WebSphere Process Server,
you can test outbound functionality by following the procedure below.
1. Open the test module in the Assembly Editor. Right-click the test module in the

Navigation pane and select Test → Test Module.
2. Configure the adapter instance. The Test Client displays a panel in which you

select the Configuration, Module, Component, Interface and Operation you
want to test. Make these selections, including the verb and the value(s) you
want sent to the adapter and click Continue.

198 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Test module configuration

3. Select the testing mode and click Finish to start the test. On the Deployment
Location screen, select a WebSphere Process Server to test in managed mode
(optionally you can select Eclipse to test in unmanaged mode). In addition, you
select Run or Debug mode. If you select Debug mode, you can set breakpoints
in your code; when the test reaches a breakpoint, WebSphere Integration
Developer displays the Debug perspective.
A screen informs you that the test is running. Then, if the adapter is successful,
the business object you specified is populated with the return data.

To run another test, click on Invoke in the top right corner of the Assembly Editor.

Saving business object data
You can use Datapool to save business object data during testing. This eliminates
the need to reenter business data with each test iteration.

After entering the same data numerous times, you will be thankful for Datapool, a
WebSphere Integration Developer utility. Datapool allows you to save business
object data for subsequent tests. To use Datapool, perform the steps in the
following procedure:
1. Open the Test module in the Assembly Editor. Right-click the adapter module

in the Navigation pane and select Test → Test Module.
2. Save the business data. After entering values for Detailed Properties, right-click

the topmost entry in the Initial request parameters pane. Select Add Value to
Pool from the menu.

WebSphere Adapter development overview 199

Adding a value to the Datapool

This adds the data to Datapool.

When you want to use this input data again, select Use Value from Pool.

Using an execution trace
The test client you installed provides you with a trace of the execution and the
data path of the test. You can optionally load any previously saved execution trace
into the test client. This enables you to renew a test session at the point where you
saved the execution.

The procedures below describe how to load and save an execution trace file.
1. Select the module from the Navigation window, right-click and select Test >

Load Execution Trace.
2. In the Choose a file list box, expand the folder that contains the execution trace

file that you want to load and select the execution trace file. (By default,
execution trace files have a file extension of .wbiexetrace.)

3. Click Finish. The selected execution trace opens in a new instance of the test
client.

4. Save the execution trace.
a. In the test client, enter Ctrl-S.
b. In the Save dialog, under the Enter or select the parent folder field, select

the folder where you want to save your execution trace file.
c. Enter the name that you want to assign to the execution trace file in the File

name field.
d. Click Finish. The execution trace file is saved to the folder that you selected

and the test client page tab changes to the name of the execution trace file.
e. Enter Ctrl-S in the test client to re-save the file.

Testing inbound functionality
To test inbound functionality, you configure an inbound instance of your adapter
with an export monitor. You then run an outbound adapter instance to generate an
event of interest for your inbound adapter.

200 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

After you have created and exported an adapter EAR file with the service type set
to Inbound, you can test inbound functionality.
1. Edit your module using the Assembly Editor, connecting the export to a Java

component.
a. Double-click on the module to start the Assembly Editor.
b. Create a new Component by selecting the Component with no

implementation from the first option.
c. Add a wire by clicking the export and dragging it to the component.

Wiring a component

d. Click OK in the next window.
e. Right-click the component and select Generate Implementation → Java .

This creates a Java component that simulates an end point.
f. Select the package where the Java code should be created. Once the package

is selected, the Java file should display as shown in the following figure.
This can be edited to insert print or process statements for testing.

WebSphere Adapter development overview 201

Selecting the Java package

g. Save the module.
2. Publish the application to WebSphere Process Server.
3. Open the administration console for the WebSphere Process Server and

configure the application’s activation specifications so that it can process
inbound requests.

4. Restart the inbound application and ensure that it is polling.
5. To start testing, select the module from the Navigation window, right-click and

select Test → Attach . The test client displays the Events window.
6. Examine the window for an export monitor.
7. Return to the Events tab and click Continue. The Deployment Location

displays.
8. Select the server on which you want to test and click Finish . The Starting The

Integration test client window displays.
9. Create an event in your application’s event table. You can do this by running

the test client on the Outbound application. When an event is received on the
monitored component, an entry will appear in the Events window.

202 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Validating code with Rational Application Developer and
WebSphere Application Server

To test the adapter in the Websphere Application Server environment, use the
javabean generation capability of EMD to generate records and a java proxy
interface to the adapter. Then generate a session bean that will call this interface,
and use the Websphere universal test client (UTC) to send data to the adapter.
1. Run EMD In Rational Application Developer, EMD can be accessed via New →

Other → J2C JavaBean

The output of EMD will be JavaBeans for your schema definition, as well as a
“J2C JavaBean” that proxies the adapter.
Once the J2C Beans are generated you need to generate EJBs to Test them.

2. Select the J2C JavaBean that you just created.

3. In the EJB Creation window, select a stateless as the Session type and container
as the transaction type and click Next

WebSphere Adapter development overview 203

4. In the Resource Adapter deployment panel, choose how to deploy the adapter.
You can deploy the adapter with the EAR or you can deploy the adapter as a
stand-alone component.

5. Click Finish to generate the code. Once the EJB is generated you can send data
to the adapter and examine the return values using the UTC.

6. Use the UTC to validate that the adapter can process data Publish your EAR
project to the server using the Add and Remove projects option.

204 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

7. Start UTC using the Run universal test client option.

WebSphere Adapter development overview 205

8. Once the UTC comes up, use the JNDI explorer to find your EJB. Look for your
session EJB under EJB Beans.

Now, you can test your adapter via the EJB interface.

You can create a session bean using the home interface (create), then invoke
business methods on the remote interface, providing the appropriate data. This
works the same way as testing any session bean.

Creating and exporting a resource adapter
For every adapter implementation in resource adapter archive (RAR) format, you
must create (export) one or more enterprise archive (EAR) files, which you deploy
to WebSphere Process Server.

Please note these guidelines when using the procedures below:
v Step 1 describes how to create an EAR file from an adapter RAR file.
v Step 2 describes how to add WebSphere Process Server to WebSphere Integration

Developer. If the target server–the server on which you will install the EAR
file–is not listed in the Servers window of WebSphere Integration Developer, you
must add it.

v Steps 3 through 6 describe how to export or deploy an EAR file to WebSphere
Process Server.

1. Create an enterprise archive (EAR) file and export (also known as deploy) it to
WebSphere Process Server. Here is a summary of the steps needed to create and
export an enterprise application archive (EAR) file for your custom adapter.
These steps are defined in adapter-specific detail in IBM WebSphere Adapter
user guide documents.
a. Launch IBM WebSphere Integration Developer.
b. Create a project in WebSphere Integration Developer and then import the

adapter RAR file.
c. Switch to the Business Integration perspective.
d. Create a module (for example, TwineballCustomerOutbound).
e. Right-click on the frame and select New → External Service.

206 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Note: External service discovery is equivalent to enterprise metadata discovery.
f. Select the appropriate external service.
g. Specify the connection properties, metadata, and service functions.
h. On the Saving Properties pane, save the properties to the module you

created in Step d.
i. Save the file.

2. Add the target server to WebSphere Integration Developer.

Note: If you have not done so, you must add the target server–WebSphere
Process Server–to WebSphere Integration Developer. You must do this before
you can export your adapter EAR file for runtime testing.
a. Right-click in the Servers window and select New → Server from the menu.
b. On the next panel, specify the hostname Note that the workstation can run

any operating system (Windows, Solaris, AIX, and so on) that supports
WebSphere Process Server.

c. Click Next to display the WebSphere Server Settings panel. You can also
click Detect to verify that WebSphere Process Server is installed on the
machine.

d. (Optional) Start WebSphere Process Server. Right-click the target WebSphere
Process Server in the Servers window and select Start from the menu.

e. (Optional) Start the administrative console. Right-click the target WebSphere
Process Server in the Servers window and select Run administrative
console from the menu.

3. Export and deploy an EAR file.
a. In the J2EE Perspective, right-click the adapter EAR file.
b. Select Export → EAR file from the pop-up menu.
c. When prompted, specify the filename where the EAR is to be saved.

4. Start the target IBM WebSphere Process Server.
5. Start the administration console on that server.
6. Install the adapter EAR file on the target WebSphere Process Server.

a. After the administrative console completes its startup on the target server,
log in and navigate to Applications → Enterprise Applications. Click
Install.

b. Select the EAR file that you exported previously. Follow the screens,
clicking Next and eventuallyFinish. Ensure that the EAR has been deployed
successfully and save the configuration by clicking on the Save to Master
Configuration link and following the prompts.

c. Start the application.
Select the application and click Start. The status should change from a red X
to a green arrow.

d. Ensure that the types in the WSDL are correct.
Switch to the Resources perspective, right-click the WSDL file and open the
Interface Editor. Examine the values in the Type column and ensure that
these are correct. Usually, the type is a BusinessGraph.

e. Publish the artifacts to WebSphere Process Server. Right-click WebSphere
Process Server and click Publish.

f. Examine the Console window to ensure that your module has been
successfully deployed to the server.

WebSphere Adapter development overview 207

Reference

Terminology
The terminology presented are of terms that are used frequently in the
documentation.

Adapter foundation classes (AFC)
Sometimes referred to as base classes, the adapter foundation classes are a
common set of services for all IBM WebSphere resource adapters. The Adapter
Foundation Classes conform to, and extend, the Java 2 Connector Architecture
JCA 1.5 specification. The foundation classes include generic contracts and
methods to develop a working resource adapter and are included as a
component to the WebSphere Adapter Toolkit.

Application response measurement (ARM)
An application programming interface (API), developed by a group of
technology vendors, that can be used to monitor the availability and
performance of business transactions within and across diverse applications
and systems.

Application-specific information (ASI)
The portion of business object metadata that enables the adapter to interact
with its application or a data source.

Common Client Interface (CCI)
The Common Client Interface (CCI) of the J2EE Connector Architecture
provides a standard interface that allows developers to communicate with any
number of Enterprise Information Systems (EISs) through their specific
resource adapters, using a generic programming style. The CCI is closely
modeled on the client interface used by Java Database Connectivity (JDBC),
and is similar in its idea of Connections and Interactions. The generic CCI
classes define the environment in which a J2EE component can send and
receive data from an EIS.

Common event infrastructure (CEI)
The implementation of a set of APIs and infrastructure for the creation,
transmission, persistence, and distribution of business, system, and network
Common Base Events.

Data exchange service provider interface (DESPI)
The interface by which resource adapters and runtime components exchange
business object data. It is based on the concept of cursors and accessors,
abstracting the data type so that an adapter can be written once and work on
runtimes supporting different data types, such as data objects and JavaBeans.
DESPI is an architecture that provides the capability of using JCA adapters on
multiple brokers (runtime environments). Version 6.1.x and version 6.2 of the
Adapter Foundation Classes support the DESPI architecture.

Deployment descriptor
An XML file that describes how to deploy a module or application by
specifying configuration and container options. For example, an EJB
deployment descriptor passes information to an EJB container about how to
manage and control an enterprise bean. Typically deployed in a runtime
environment to discover the configuration attributes of the component being
described.

208 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Eclipse
An open source infrastructure for building tools such as an Integrated
Development Environment (IDE). The toolkit’s wizard and editor are Eclipse
plug-ins.

Eclipse Plug-in
A module that extends the functionality of the Eclipse Platform

Editor
A component in Eclipse that allows data to be edited. Editors may perform
syntax validation.

Enterprise information system (EIS)
The applications that comprise an enterprise’s existing system for handling
company-wide information. An enterprise information system offers a
well-defined set of services that are exposed as local or remote interfaces or
both.

Event
An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state of a
process. Events generally result from user-defined triggers set on objects in the
EIS

IBM Rational Application Developer
An IBM application that provides a set of extensions to the base Eclipse
platform.

IBM WebSphere Adapter
A J2C Resource Adapter that is based on the Adapter Foundation Classes.

IBM WebSphere Process Server
Enables deployment of standards-based integration applications in a
service-oriented architecture (SOA).

IBM WebSphere Integration Developer
An IBM IDE.

Inbound
Inbound is a description of the direction in which data and messages pass
from the EIS to a J2EE client application. Adapters support both inbound and
outbound data flow.

JCA contract
A contract is a collaborative agreement between an application server and an
EIS on how to keep all system-level mechanisms, such as transactions, security,
and connection management, transparent from the application components.

J2EE J2C Resource Adapter
A system-level software driver that is used by an EJB container or an
application client to connect to an enterprise information system (EIS). A
resource adapter plugs in to a container; the application components deployed
on the container then use the client API (exposed by adapter) or
tool-generated, high-level abstractions to access the underlying EIS.

managed mode
An environment in which connections are obtained from connection factories
that the J2EE server has set up. Such connections are owned by the J2EE
server.

WebSphere Adapter development overview 209

Outbound
Outbound is a description of the direction in which data and messages pass
from a J2EE client application to the EIS. Adapters support both inbound and
outbound data flow.

Performance monitoring infrastructure (PMI)
A set of packages and libraries assigned to gather, deliver, process, and display
performance data. PMI is the underlying framework in WebSphere Application
Server that gathers performance data from various runtime resources such as
adapters. The purpose of monitoring is to observe the progress of execution of
WebSphere business integration applications, and the WebSphere business
integration system itself, and publish the results of this observation.

Request
In a request and response interaction, the role performed by a business object
that instructs an adapter to interact with an application or other programmatic
entity.

Subclass
In programming, to add custom processing to an existing function or
subroutine by hooking into the routine at a predefined point and adding
additional lines of code.

Wizard
A sequence of dialogue pages which collect user input to perform a task such
as creating a New Java Project in the workspace or creating a New Java Class
within a selected project.

210 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006, 2008 211

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department 2Z4A/SOM1
294 Route 100
Somers, NY 10589-0100
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows: (c) (your company name) (year). Portions of

212 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

this code are derived from IBM Corp. Sample Programs. (c) Copyright IBM Corp.
enter the year or years. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create
application software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning:

Do not use this diagnosis, modification, and tuning information as a programming
interface because it is subject to change.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. These and other IBM trademarked terms are marked on their first
occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law
trademarks in other countries. A complete and current list of IBM trademarks is
available on the Web at http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Java and all Java based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

This product includes software developed by the Eclipse Project
(http://www.eclipse.org).

Notices 213

http://www.eclipse.org

214 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

Index

Special characters
.WBIOutboundServiceDescriptionImpl 39
(CCI), Common Client Interface 4
(EAR) project, Enterprise Application

Archive 31
(EAR), enterprise application archive 2
(RAR), resource adapter archive 2

Numerics
1.5 specification, Java 2 Connector

Architecture JCA 10
2 Connector Architecture JCA 1.5

specification, Java 10

A
ActivationSpecWithXid 67
adapter archive (RAR), resource 2
adapter classes, inbound 37
adapter classes, inbound JCA 50
adapter classes, outbound 35, 40
adapter classes, outbound JCA 49
Adapter Foundation Classes 4, 9, 10
Adapter Toolkit, WebSphere 1
Adapter, WebSphere 3
after-image Create 74
after-image Create operation 74
after-image Update 75
after-images versus deltas 71
Application Archive (EAR) project,

Enterprise 31
application archive (EAR), enterprise 2
Application response measurement

(ARM) 187
interface 188

Application-specific information format
JavaBean Metadata 116
SDO to JavaBeanRecord

mappings 117
ApplyChanges 74
Architecture JCA 1.5 specification, Java 2

Connector 10
Architecture overview 4

adapter foundation classes
component 6

Application interface component 7
common services component 6
connectivity subcomponent 6
Data exchange subcomponent 6
JCA connector component 5
Metadata component 7
runtime component model 4, 5, 6, 7

Archive (EAR) project, Enterprise
Application 31

archive (EAR), enterprise application 2
archive (RAR), resource adapter 2

C
Callback event sender constructors 92
CCI Record 70
Classes

Adapter Foundation
WBIFunctionBuilder 160
WBIMetadataBuild 160
WBIMetadataType 160

Classes, Adapter Foundation 4, 10
classes, command pattern 43
classes, data binding 38, 48
classes, enterprise metadata

discovery 39, 47
classes, inbound adapter 37
classes, inbound JCA adapter 50
classes, JCA enterprise metadata

discovery 50
classes, outbound adapter 35, 40
classes, outbound JCA adapter 49
Client Interface (CCI), Common 4
command pattern classes 43
Common Client Interface (CCI) 4
Config Property 67
Connection 49
Connection Definition Property 67
ConnectionFactory 49
ConnectionMetaData 49
ConnectionMetaDataImpl 35
ConnectionRequestInfo 49, 67
ConnectionSpec 35, 49
Connector Architecture JCA 1.5

specification, Java 2 10
Connector Project 30
Connector Project, Java 9
Create operation, after-image 74
custom operations 79

D
Data and Metadata

about 115
Application-specific information 116,

117
JavaBean 115, 116
relationship to DESPI 115
SDO 117
XSD 115

Data binding
generator 167
getBusinessObjectName 167
getDataObject 166
getNamespaceURI 167
getRecord 167
implementation 166
implementing 159
interfaces 166
methods 166, 167
setDataObject 166
setRecord 167

data binding classes 38, 48

Data handler
implementing 158

data model
business object 69

DataBindingImpl 38
deployment descriptor 10

description of 56
editor 55, 56

descriptor, deployment 10
discovery classes, enterprise

metadata 39, 47
discovery classes, JCA enterprise

metadata 50
discovery, enterprise metadata 3

E
Eclipse plug-in 9
editing source 67
enterprise application archive (EAR) 2
Enterprise Application Archive (EAR)

project 31
enterprise metadata discovery 3

application adapters 124
build packages 158
data bindings 158
data handlers 158
implementation 124
technology adapters 158
technology-style adapters 157

enterprise metadata discovery
classes 39, 47

enterprise metadata discovery classes,
JCA 50

event error handling 89
EventStore 37, 89
exception messages 193
Extending PMI on WebSphere

Application Server 187
Extending PMI on WebSphere Process

Server 186

F
Fault handling 168

binding 168
business object utility 168
configuration 172
defining custom faults 173
fault names 172
implementing 169
naming faults 169
selector 168
support 169

First failure data capture (FFDC) 189
Foundation Classes, Adapter 4, 10
Function selector

implementing 158

© Copyright IBM Corp. 2006, 2008 215

G
generation options 35

H
hardware requirements 12

I
implementation overview 68
Inbound

callback event notification 90, 91, 92,
94

callback event sender 91
callback event sender constructors 92
event notification 79
one way callback events 90
operations 72
request and response callback

events 90
standard 72
using adapter foundation classes 91
with XA transaction 94

inbound adapter classes 37
Connection pooling 37
Event polling 38
inbound callback event 38
properties 37, 38

inbound JCA adapter classes 50
installation 11
Interaction 49
InteractionSpec 49
Interface (CCI), Common Client 4

J
J2C Resource Adapter Properties

window 33
Java 2 Connector Architecture JCA 1.5

specification 10
Java Connector Project 9
JavaBean properties 66
Javadoc 10
javax.resource.spi.ActivationSpec 50
JCA 1.5 specification, Java 2 Connector

Architecture 10
JCA adapter classes, inbound 50
JCA adapter classes, outbound 49
JCA enterprise metadata discovery

classes 50

K
KiteString sample 12

L
LocalTransaction 49
log messages 178
Logging

Common Event Infrastructure 184
events 184

M
ManagedConnectionFactory 50, 67
ManagedConnectionMetaData 50
MangedConnection 50
Message Listener Property 67
Metadata

API 119
application-specific information 7
artifact types 122
data bindings 122
factory classes 120
generated records 122
generic records 122
implementation 122
interfaces 120
SDOFactory 120
supported runtimes 122
TypeFactory 120

metadata discovery classes,
enterprise 39, 47

metadata discovery classes, JCA
enterprise 50

metadata discovery, enterprise 3
Monitoring

adapters 181, 185
Application response measurement

(ARM) 187
Common Event Infrastructure 181,

184
Common Event Infrastructure

(CEI) 181
element schema 183
Event point 182
Event source 182
EventSourceContext 181
InboundEventDelivery 185
InboundEventRetrieval 185
interface 181
logging 184
Outbound 185
Performance monitoring infrastructure

(PMI) 185, 186, 187
types of 181
Unique Id 183
Xsd schema 184

N
namespace definition 136
New Connector Project Wizard 9

O
one way callback events 90
operating system requirements 11
Operations

inbound 72
outbound 73
standard 72, 73
top-level 72

Outbound
operations 73
standard 73

outbound adapter classes 40
Command pattern 37
Local transaction support 36

outbound adapter classes (continued)
properties 35, 36, 37
WebSphere Resource Adapter 35
XA transaction support 36

outbound JCA adapter classes 49

P
pattern classes, command 43
Performance monitoring infrastructure

(PMI) 185
plug-in, Eclipse 9
Project

New Connector Project wizard 29
Project facets 32
project, Enterprise Application Archive

(EAR) 31
Project, Java Connector 9

R
Request and response callback events 90
resource adapter archive (RAR) 2
Resource Adapter Deployment Descriptor

editor 57, 68
Resource Adapter Deployment Descriptor

Editor 9
resource adapter properties 33
Retrieve 77
RetrieveAll 77

S
sample, KiteString 12
sample, TwineBall 12
samples 9
service data object (SDO) 70
Service-Oriented Architecture (SOA) 70
software requirements 12
specification, Java 2 Connector

Architecture JCA 1.5 10
Standard operations 72
Structured record implementation 163

Clone 165
Close 165
Extract 165
getNext() 164
initializeInput 163
initializeOutput 163
methods 163, 164, 165
sample code 163, 164, 165
setManagedConnection 164

T
Toolkit, WebSphere Adapter 1
trace levels 177
trace messages 176
trace messages, hiding confidential

data 176
TwineBall sample 12

U
Update, after-image 75

216 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

V
verbs

usage
business graph 71

W
WBIActivationSpec 37
WBIAdapterTypeImpl 39, 141
WBIConnection 35, 102
WBIConnectionFactory 35, 101
WBIConnectionRequestInfo 104
WBIDataBindingGenerator 38
WBIDataDescriptionImpl 39, 151
WBIInboundConnectionConfigurationImpl 39,

146
WBIInboundConnectionTypeImpl 39,

143
WBIInboundServiceDescriptionImpl 39,

155
WBIInteraction 35, 102
WBIInteractionSpec 35, 103
WBILocalTransaction 35
WBIManagedConnection 35, 100
WBIManagedConnectionFactory 35, 99
WBIMetadataDiscoveryImpl 39, 139
WBIMetadataEditImpl 39, 151
WBIMetadataImportConfigurationImpl 39,

150
WBIMetadataObjectImpl 39, 149
WBIMetadataSelectionImpl 39, 149
WBIMetadataTreeImpl 39, 147
WBIOutboundConnectionConfiguration 39
WBIOutboundConnectionConfigurationImpl 144
WBIOutboundConnectionTypeImpl 39,

143
WBIOutboundServiceDescriptionImpl 156
WebSphere Adapter 3
WebSphere Adapter Toolkit 1
WebSphere Adapter Toolkit tasks 11
WebSphere Integration Developer 29

X
XML Schema Definition 68

Index 217

218 WebSphere Adapters: WebSphere Adapter Toolkit User Guide

����

Printed in USA

Free Manuals Download Website
h�p://myh66.com

h�p://usermanuals.us
h�p://www.somanuals.com

h�p://www.4manuals.cc
h�p://www.manual-lib.com
h�p://www.404manual.com
h�p://www.luxmanual.com

h�p://aubethermostatmanual.com
Golf course search by state

h�p://golfingnear.com
Email search by domain

h�p://emailbydomain.com
Auto manuals search

h�p://auto.somanuals.com
TV manuals search

h�p://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	Contents
	WebSphere Adapter Toolkit
	IBM WebSphere Adapter Toolkit technology overviews
	IBM WebSphere Adapters
	Architectural overview
	How metadata is used at build time and run time
	Using Enterprise Metadata Discovery to build services

	IBM WebSphere Adapter Toolkit overview
	New Connector Project wizard overview
	Resource Adapter Deployment Descriptor Editor overview
	Adapter Foundation Classes overview

	IBM WebSphere Adapter Toolkit tasks
	IBM WebSphere Adapter Toolkit installation requirements
	Samples overview
	Running the Twine Ball sample using WebSphere Integration Developer
	Import the samples code
	Run external service discovery for outbound processing
	Run external service discovery for inbound processing
	Modify the module
	Test the sample

	Running the Twine Ball sample using Rational Application Developer
	Import the samples code into Rational Application Developer and modify the sample for use
	Test the sample using the universal test client

	Troubleshooting the samples

	Using the New Connector Project wizard
	Launching the New Connector Project wizard
	Specify project properties
	Specify project facets
	Specify connector project module settings
	Specify resource adapter properties
	Specify generation options
	Generating an IBM WebSphere Resource Adapter
	Generating outbound adapter classes
	Generating inbound adapter classes
	Generating enterprise metadata discovery classes
	Generating data binding classes

	Generating a JCA resource adapter
	Generating outbound JCA adapter classes
	Generating inbound JCA adapter classes
	Generating JCA enterprise metadata discovery classes

	Generated code and deployment descriptor

	Using the Resource Adapter Deployment Descriptor editor
	Displaying the deployment descriptor
	Using the Overview pane
	Using the Resource Adapter pane
	Using the Outbound Adapter pane
	Using the Inbound Adapter pane

	Modifying deployment descriptor properties
	Generated bean properties

	Editing deployment descriptor source

	Implementing code from the IBM WebSphere Adapter Toolkit
	Foundation Classes implementation overview
	Data model
	Relationship of business objects to service data objects
	After-images versus deltas
	Verbs
	Verbs versus operations
	Business object standards

	Inbound event notification
	Using the IBM WebSphere Foundation Classes for inbound event notification
	Assured once-and-once-only event delivery
	Implementing an event store in the EIS
	Implementing event retrieval in the adapter
	Possible event store implementations

	Inbound callback event notification
	Request and response callback events
	One way callback events
	Using the IBM WebSphere adapter foundation classes for inbound callback event processing
	Callback event sender
	Callback event processing for basic delivery
	Callback event processing for event delivery with XA transaction
	Callback event processing for event recovery

	Outbound support
	Application sign-on
	Implementing outbound support
	Implementing transaction support
	Using command patterns

	Data and metadata
	Enterprise Metadata Discovery general interfaces and implementation for application adapters
	Types of enterprise metadata
	Enterprise metadata discovery architecture
	Metadata discovery
	Metadata discovery adapter type
	Metadata discovery connection type
	Enterprise metadata discovery description APIs
	Business object structures for enterprise metadata discovery
	Namespace definition
	Implementing enterprise metadata discovery classes
	Enterprise metadata discovery implementation samples

	Enterprise Metadata Discovery interfaces and implementation for technology adapters
	Building configurable artifacts (data bindings, data handlers, and function selectors)
	Implementing Enterprise Metadata Discovery to build an interface

	Structured record implementation
	Initialize input method
	Initialize output method
	Set managed connection method
	Get next method
	Clone method
	Close method
	Extract method

	Data binding implementation
	Bidirectional language support
	Problem determination
	Fault handling support
	Logging and tracing messages
	Monitoring and measuring performance
	Exception messages
	Changing the Java logging API settings

	Validating the code
	Testing enterprise metadata discovery (EMD) of the adapter
	Testing the adapter in unmanaged mode
	JUnit: an open source framework for unit testing
	Developing JUnit tests

	Testing the adapter in managed mode
	Testing outbound functionality
	Saving business object data
	Using an execution trace
	Testing inbound functionality

	Validating code with Rational Application Developer and WebSphere Application Server

	Creating and exporting a resource adapter
	Reference
	Terminology

	Notices
	Programming interface information
	Trademarks and service marks

	Index
	Special characters
	Numerics
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

