
AS/400e

HTTP Server for AS/400 Web
Programming Guide

GC41-5435-04

���

AS/400e

HTTP Server for AS/400 Web
Programming Guide

GC41-5435-04

���

Note
Before using this information and the product it supports, be sure to read the general information under “Chapter 11.
Notices” on page 145.

Fifth Edition (May 2000)

This edition applies to the IBM HTTP Server for AS/400 licensed program (Program 5769-DG1), Version 4 Release 5
Modification 0 and to all subsequent releases and modifications until otherwise indicated in new editions. This
edition applies only to reduced instruction set computer (RISC) systems.

This edition replaces GC41-5435-03.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About HTTP Server for AS/400 Web
Programming Guide (GC41-5435) v
Conventions in this book v
AS/400 Operations Navigator v

Installing Operations Navigator vi
Prerequisite and related information vi
How to send your comments vi

Chapter 1. Writing Common Gateway
Interface Programs 1
Overview of the CGI 1

CGI and Dynamic Documents 2
Uses for CGI 3

The CGI process 3
Overview 3
Sending Information to the Server 5
Data Conversions on CGI Input and Output . . . 5
Returning Output from the Server 11
How CGI Programs Work 12

Environment variables. 13
Requests from Standard Search (ISINDEX)
Documents 15
Passing SSL Environment Variables to a CGI
Program 15

CGI Programs and AS/400 Activation Groups . . . 17
AS/400 Activation Groups 17
CGI Considerations. 18
Activation Group Problem Examples 18

Chapter 2. Application Programming
Interfaces 23
APIs for CGI applications 24

Get Environment Variable (QtmhGetEnv) API . . 25
Put Environment Variable (QtmhPutEnv) API . . 26
Read from Stdin (QtmhRdStin) API 27
Write to Stdout (QtmhWrStout) API 29
Convert to DB (QtmhCvtDB) API 30
Parse QUERY_STRING Environment Variable or
Post stdin data (QzhbCgiParse) API 32
Produce Full HTTP Response (QzhbCgiUtils) API 36

Configuration APIs 38
Convert URL to Path (QzhbCvtURLtoPath) API 38
Retrieve Directive (QzhbRetrieveDirective) API 40
Retreive a list of all Configuration Names
(QzhbGetConfigNames) API 42
Create a Configuration (QzhbCreateConfig) API 43
Delete a Configuration (QzhbDeleteConfig) API 44
Read a Configuration File into Memory
(QzhbOpenConfig) API 45
Free a Configuration File from Memory
(QzhbCloseConfig) API 46
Search for a Main Directive (QzhbFindDirective)
API 47

Search for a Subdirective under Main Directive
(QzhbFindSubdirective) API 49
Return Details of a Main Directive or
Subdirective (QzhbGetDirectiveDetail) API . . . 51
Add a Main Directive or Subdirective
(QzhbAddDirective) API 52
Remove a Main Directive or Subdirective
(QzhbRemoveDirective) API 54
Replace a Main Directive or Subdirective
(QzhbReplaceDirective) API 55

Server instance APIs 56
Retrieve a list of all Server Instances
(QzhbGetInstanceNames) API 56
Look up Server Instance Data
(QzhbGetInstanceData) API 58
Change Server Instance Data
(QzhbChangeInstanceData) API 60
Create a Server Instance (QzhbCreateInstance)
API 62
Delete a Server Instance (QzhbDeleteInstance)
API 63

Group file APIs 64
Create a new Group File (QzhbCreateGroupList)
API 64
Read a Group File into Memory
(QzhbOpenGroupList) API 65
Free Group File from Memory
(QzhbCloseGroupList) API 67
Retrieve the next Group in the Group List
(QzhbGetNextGroup) API 68
Locate a named group in a Group List
(QzhbFindGroupInList) API 69
Retrieve the Name of a Group
(QzhbGetGroupName) API 70
Add a new Group to the end of a Group List
(QzhbAddGroupToList) API 71
Remove a Group from a Group List
(QzhbRemoveGroupFromList) API 72
Retrieve the next User in the Group
(QzhbGetNextUser) API 73
Locate a User in a Group
(QzhbFindUserInGroup) API 74
Retrieve the Name of a User
(QzhbGetUserString) API 75
Add a new user to the end of a Group
(QzhbAddUserToGroup) API 76
Remove a User or Element from a Group
(QzhbRemoveUserFromGroup) API 77

Chapter 3. Using Net.Data to Write CGI
Programs for You 79
Overview of Net.Data 79

Chapter 4. Using Persistent CGI
Programs 81

© Copyright IBM Corp. 1997, 2000 iii

Overview of Persistent CGI 81
Named Activation Groups 81
Accept-HTSession CGI Header 81
HTTimeout CGI Header 82
Considerations for using Persistent CGI
Programs 82
Persistent CGI Program Example 83

Chapter 5. Enabling your AS/400 to run
CGI programs. 85
How to enable the server to run CGI programs . . 85
Using directives for security and access control . . 86

The default fail rule 87
Explicit CGI enablement 87
Server runs only CGI programs. 87

CGI program considerations 87

Chapter 6. Sample programs (in Java,
C, and RPG) 89
Example of Java language CGI program 89
Example of C language CGI program. 94
Example of RPG language CGI program. 99
Example of a C language server configuration API
program 105

Chapter 7. Writing Server API
programs 109
Overview of the Server API 109
General procedure for writing Server API
programs 109

Guidelines 109
Basic server request process 110
Application functions 111

HTTP return codes and values. 113
Predefined functions and macros 114
Return codes 119

Server API configuration directives 120
Server API usage notes 120
Server API directives and syntax 120
Server API directive variables 121

Compatibility with other APIs 122
Porting CGI programs 122
Authentication and Authorization 122
Environment variables 123
Server API variables 124

Chapter 8. Writing Java Servlets . . . 129
Overview of servlets 129

Chapter 9. Using Server-Side Includes 131
Considerations for using server-side includes. . . 131
Preparing to use server-side includes 131
Format for server-side includes 132
Directives for server-side includes 132

Chapter 10. Troubleshooting your CGI
programs 139

Chapter 11. Notices 145
Programming Interface Information 146
Trademarks 146

Readers’ Comments — We’d Like to
Hear from You 149

iv Web Programming Guide V4R5

About HTTP Server for AS/400 Web Programming Guide
(GC41-5435)

The web is an interactive medium. For example, it allows users to use search
utilities to locate information on a topic, give feedback to a company about its
products, and more. The IBM HTTP Server software does not perform these tasks.
They are performed by external programs using information passed to them by the
server. The HTTP Server for AS/400 Web Programming Guide tells you how to write
external programs that interact with the IBM HTTP Server for AS/400 product.

The HTTP Server for AS/400 Webmaster’s Guide, GC41-5434, describes the
configuration directives used to set up and control the IBM HTTP Server for
AS/400 product.

The IBM AS/400 Information Center presents information about the Web server and
many other AS/400 products and topics in an electronic, searchable database
format. The Information Center offers assistance in setting up and configuring your
Web server and publishing a Web site, as well as the advanced functions such as
logging and proxy serving. It is available on the Internet at
http://publib.boulder.ibm.com/html/as400/infocenter.html or on CD-ROM:
AS/400 Information Center, SK3T-2027-03

The IBM HTTP Server is IBM’s web server, and it is a cross platform product. With
the IBM HTTP Server you can serve multimedia objects such as Hypertext Markup
Language (HTML) documents to World Wide Web browser clients with your
AS/400 system. The IBM HTTP Server for AS/400 is fully HTTP 1.1 compliant.

The IBM HTTP Server for AS/400 (that was introduced in V4R3) replaces the IBM
AS/400 Internet Connection Server (ICS) introduced in OS/400 V4R1.

Conventions in this book

Boldface Indicates the name of an item you need to select, the name of a field, or a
string you must enter.

Italics Indicates book titles or variable information that must be replaced by an
actual value.

Bold italics Indicates a new term.
Monospace Indicates an example, a portion of a file, or a previously entered value.

AS/400 Operations Navigator
AS/400 Operations Navigator is a powerful graphical interface for Windows
clients. With AS/400 Operations Navigator, you can manage and administer your
AS/400 systems from your Windows desktop.

You can use Operations Navigator to manage communications, printing, database,
security, and other system operations. Operations Navigator includes Management
Central for managing multiple AS/400 systems centrally.

This new interface has been designed to make you more productive and is the
only user interface to new, advanced features of OS/400. Therefore, IBM

© Copyright IBM Corp. 1997, 2000 v

recommends that you use AS/400 Operations Navigator, which has online help to
guide you. While this interface is being developed, you may still need to use an
emulator such as PC5250 to do some of your tasks.

Installing Operations Navigator
To use AS/400 Operations Navigator, you must have Client Access installed on
your Windows PC. For help in connecting your Windows PC to your AS/400
system, consult Client Access Express for Windows - Setup, SC41-5507-01.

AS/400 Operations Navigator is a separately installable component of Client
Access that contains many subcomponents. If you are installing for the first time
and you use the Typical installation option, the following options are installed by
default:
v Operations Navigator base support
v Basic operations (messages, printer output, and printers)

To select the subcomponents that you want to install, select the Custom installation
option. (After Operations Navigator has been installed, you can add
subcomponents by using Client Access Selective Setup.)

After you install Client Access, double-click the AS400 Operations Navigator icon
on your desktop to access Operations Navigator and create an AS/400 connection.

Prerequisite and related information
Use the AS/400 Information Center as a starting point for your AS/400
information needs. It is available in either of the following ways:
v The Internet at this uniform resource locator (URL) address:

http://publib.boulder.ibm.com/html/as400/infocenter.html

v On CD-ROM: AS/400 Information Center, SK3T-2027-03 .

The AS/400 Information Center contains important topics such as logical
partitioning, clustering, Java, TCP/IP, Web serving, and secured networks. It also
contains Internet links to Web sites such as the AS/400 Online Library and the
AS/400 Technical Studio. Included in the Information Center is a link that
describes at a high level the differences in information between the Information
Center and the Online Library.

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
AS/400 documentation, fill out the readers’ comment form at the back of this
book.
v If you prefer to send comments by mail, use the readers’ comment form with the

address that is printed on the back. If you are mailing a readers’ comment form
from a country other than the United States, you can give the form to the local
IBM branch office or IBM representative for postage-paid mailing.

v If you prefer to send comments by FAX, use either of the following numbers:
– United States and Canada: 1-800-937-3430
– Other countries: 1-507-253-5192

v If you prefer to send comments electronically, use this network ID:
– IBMMAIL, to IBMMAIL(USIB56RZ)

vi Web Programming Guide V4R5

– RCHCLERK@us.ibm.com

Be sure to include the following:
v The name of the book.
v The publication number of the book.
v The page number or topic to which your comment applies.

About HTTP Server for AS/400 Web Programming Guide (GC41-5435) vii

viii Web Programming Guide V4R5

Chapter 1. Writing Common Gateway Interface Programs

Overview of the CGI 1
CGI and Dynamic Documents 2
Uses for CGI 3

The CGI process 3
Overview 3
Sending Information to the Server 5
Data Conversions on CGI Input and Output . . . 5

CGI Input Conversion Modes. 6
DBCS Considerations 7
CGI Output Conversion Modes 9

Returning Output from the Server 11
How CGI Programs Work 12

Parsing 12
Data manipulation 12
Response generation 12

Environment variables. 13
Requests from Standard Search (ISINDEX)
Documents 15
Passing SSL Environment Variables to a CGI
Program 15

CGI Programs and AS/400 Activation Groups . . . 17
AS/400 Activation Groups 17
CGI Considerations. 18
Activation Group Problem Examples 18

This chapter discusses the Common Gateway Interface (CGI): What it is, why you
might want to use it, and how it works.

Overview of the CGI
CGI is a standard, supported by almost all web servers, that defines how
information is exchanged between a web server and an external program (CGI
program).

The CGI specification dictates how CGI programs get their input and how they
produce any output. CGI programs process data that is received from browser
clients. For example, the client fills out a form and sends the information back to
the server. Then the server runs the CGI program.

Programs that are called by the server must conform to the server CGI interface in
order to run properly. We will describe this in further detail later in this chapter.

The administrator controls which CGI programs the system can run by using the
server directives. The server recognizes a URL that contains a request for a CGI
program, commonly called a CGI script. Depending on the server directives, the
server calls that program on behalf of the client browser.

For more information on CGI, see this URL:

http://www.w3.org/Daemon/User/CGI/Overview.html.

AS/400® supports CGI programs that are written in C++, Rexx, Java®, ILE-C,
ILE-RPG, and ILE-COBOL. It also supports multi-thread CGI programs in all of
these languages capable of multiple threads. For sample code that can help you
with CGI programs, see the AS/400 Web Builder’s Workshop. You can find it at the
following URL:

http://www.as400.ibm.com/tstudio/workshop/webbuild.htm.

You need to compile programs that are written in programming languages.
Compiled programs typically run faster than uncompiled programs. On the other
hand, those programs that are written in scripting languages tend to be easier to
write, maintain, and debug.

© Copyright IBM Corp. 1997, 2000 1

The functions and tasks that CGI programs can perform range from the simple to
the very advanced. In general, we call those that perform the simple tasks CGI
scripts because you do not compile them. We often call those that perform
complex tasks gateway programs. In this manual, we refer to both types as CGI
programs.

Given the wide choice of languages and the variety of functions, the possible uses
for CGI programs seem almost endless. How you use them is up to you. Once you
understand the CGI specification, you will know how servers pass input to CGI
programs and how servers expect output.

There are many uses for CGI programs. Basically, you should design them to
handle dynamic information. Dynamic in this context refers to temporary
information that is created for a one-time use and not stored anywhere on the web.
This information may be a document, an e-mail message, or the results of a
conversion program.

For detailed information about AS/400 CGI APIs, see “Chapter 2. Application
Programming Interfaces” on page 23.

CGI and Dynamic Documents
There are many types of files that exist on the web. Primarily they fall into one of
the following categories:
v Images
v Multimedia
v Programs
v HTML documents

Servers break HTML documents into two distinct types:
v Static
v Dynamic

Static documents exist in non-changing source form on the web server. You should
create Dynamic documents as temporary documents to satisfy a specific, individual
request.

Consider the process of ″serving″, these two types of documents. Responding to
requests for static documents is fairly simple. For example, Jill User accesses the
Acme web server to get information on the Pro-Expert gas grill. She clicks on
Products, then on Grills, and finally on Pro-Expert. Each time Jill clicks on a link,
the web browser uses the URL that is attached to the link to request a specific
document from the web server. The server responds by sending a copy of the
document to Jill’s browser.

What if Jill decides that, she wants to search through the information on the Acme
web server for all documents that contain information on Acme grills? Such
information could consist of news articles, press releases, price listings, and service
agreements. This is a more difficult request to process. This is not a request for an
existing document. Instead, it is a request for a dynamically generated list of
documents that meet certain criteria. This is where CGI comes in.

You can use a CGI program to parse the request and search through the
documents on your web server. You can also use it to create a list with hypertext
links to each of the documents that contain the specified word or string.

2 Web Programming Guide V4R5

Uses for CGI
HTML allows you to access resources on the Internet by using other protocols that
are specified in the URL. Examples of such protocols are mailto, ftp, and news. If
you code a link with mailto that is followed by an e-mail address, the link will
result in a generic mail form.

What if you wanted your customers to provide specific information, such as how
often they use the web? Or how they heard about your company? Rather than
using the generic mailto form, you can create a form that asks these questions and
more. You can then use a CGI program to interpret the information, include it in
an e-mail message, and send it to the appropriate person.

You do not need to limit CGI programs to processing search requests and e-mail.
You can use them for a wide variety of purposes. Basically, anytime you want to
take input from the reader and generate a response, you can use a CGI program.
The input may even be apparent to the reader. For example, many people want to
know how many other people have visited their home page. You can create a CGI
program that keeps track of the number of requests for your home page. This
program can display the new total each time someone links to your home page.

The CGI process
Usually CGI programs are referred to from within HTML documents. In general,
the HTML document format defines the environment variables that specify the
passing of information. When you design the layout of your HTML document, you
must keep in mind how a CGI program might affect the look of your document.
Developing the CGI program along with the HTML document will help you avoid
many design mistakes.

Overview
The CGI process involves three players: The web browser, the web server, and the
CGI program. To exemplify how CGI programs for online forms work, let us
assume that the web browser has already requested and obtained an HTML form.
1. The user clicks buttons or enters information in fields, and then clicks on an

HTML button to submit the request.
2. The web browser then sends the data to the web server in an encoded format.

For example, the data might consist of responses on an HTML form.
3. When the web server receives data, it converts the data to a format compliant

with the CGI specification for input and sends it to the CGI program.
4. The CGI program then decodes and processes the data.
5. The system sends this response back to the web server in a form that is

compliant with the CGI specification for output.
6. The web server then interprets the response and forwards it to the web

browser.

Note: If a CGI application program must change the HTTP server job attributes
while processing, the CGI program must restore the attributes to their initial
values before the CGI program ends. Failure to restore job attributes that are
changed in the CGI program will result in unpredictable responses to future
server requests. For example, a CGI program that requires a library in the
library list needs to add the library to the library list. The CGI program
must remove the library list before the CGI program ends.

Chapter 1. Writing Common Gateway Interface Programs 3

The following HTML form illustrates the various types of fields:

Note: The CGIXMP.EXE program referred to in this sample is just an example; it is
not shipped with the server product.

<HTML>
<HEAD>
<TITLE>CGIXMP Test Case</TITLE>
</HEAD>
<BODY>
<H1>CGI Sample Test Case</H1>
Fill in the following fields and press APPLY.
The values you enter will
be read by the CGIXMP.EXE program and displayed in a simple HTML
form which is generated dynamically by the program.
<P> <HR>
<form method=POST action="/cgi-bin/cgixmp">
<P>
<H3>Checkbox Field</H3>
<P>
<PRE>
<input type="checkbox" name="var1" value="123">
Check to set variable VAR1 to 123

<input type="checkbox" name="var2" value="XyZ" checked>
Check to set variable VAR2 to XyZ

</PRE>
<P>
<H3>Radio Button Field</H3>
<P>
<PRE>
<input type="radio" name="var3" value="1">
Select to set variable VAR3 to 1

<input type="radio" name="var3" value="2">
Select to set variable VAR3 to 2

<input type="radio" name="var3" value="3" checked>
Select to set variable VAR3 to 3

<input type="radio" name="var3" value="4">
Select to set variable VAR3 to 4

</PRE>
<P>
<H3>Single selection List Field</H3>
<P>
<PRE>
Select a value for variable VAR4 <select size=1 name="var4">
<option>0<option>1<option>2<option>3
<option>4<option>5</select>
</PRE>
<P>
<H3>Text Entry Field</H3>
<P>
<PRE>
Enter value for variable VAR5 <input type="text" name="var5"
size=20 maxlength=256 value="TEST value">
</PRE>
<P>
<H3>Multiple selection List Field</H3>
<P>
<PRE>
Select a value for variable VAR6
<select multiple size=2 name="var6">
<option>Ford<option>Chevrolet<option>Chrysler<option>
Ferrari<option>Porsche
</select>
</PRE>

<P>
<H3>Password Field</H3>
<P>

4 Web Programming Guide V4R5

<PRE>
Enter Password
<input type="password" name="pword" size=10 maxlength=10>
</PRE>
<P>
<H3>Hidden Field</H3>
<P>
<input type="hidden" name="hidden" value="Text not shown on form...">
<P>
<PRE>
<input type="submit" name="pushbutton" value="Apply">
<input type="reset" name="pushbutton" value="Reset">
<HR>
</PRE>
</FORM>
</BODY>
</HTML>

Sending Information to the Server
When you fill out a form, the web browser sends the request to the server in a
format that is described as URL-encoded. The web browser also performs this
function whenever you enter a phrase in a search field and click on the submission
button. In URL-encoded information:
v The URL starts with the URL of the processing program.
v A question mark (?) precedes attached data, such as name=value information

from a form, which the system appends to the URL.
v A plus sign (+) represents spaces.
v A percent sign (%) that is followed by the American National Standard Code for

Information Interchange (ASCII) hexadecimal equivalent of the symbol
represents special characters, such as a period (.) or slash (/).

v An ampersand (&) separates fields and sends multiple values for a field such as
check boxes.

Note: The method attribute specifies how the server sends the form information to
the program. You use the GET and POST methods in the HTML file to
process forms. The GET method sends the information through environment
variables. You will see the information in the URL after the ″?″ character.
The POST method passes the data through standard input.

The main advantage of using the GET method is that you can access the
CGI program with a query without using a form. In other words, you can
create canned queries that pass parameters to the program. For example, if
you want to send the previous query to the program directly, you can do
the following:

YourCGI Program

The main advantage to the POST method is that the query length can be
unlimited so you do not have to worry about the client or server truncating
data. The query string of the GET method cannot exceed 4 KB.

Data Conversions on CGI Input and Output
The server can perform ASCII to EBCDIC conversions before sending data to CGI
programs. This is because the Internet is an ASCII world and the AS/400 is
primarily an extended binary-coded decimal interchange code (EBCDIC) world.
The server can also perform EBCDIC to ASCII conversions before sending data

Chapter 1. Writing Common Gateway Interface Programs 5

back to the browser. You must provide data to a CGI program through
environment variables and standard-input (stdin). HTTP and HTML specifications
allow you to tag text data with a character set (charset parameter on the
Content-Type header). However, this practice is not widely in use today (although
technically required for HTTP1.0/1.1 compliance). According to this specification,
text data that is not tagged can be assumed to be in the default character set
ISO-8859-1 (US-ASCII). AS/400 correlates this character set with ASCII CCSID 819.

There are basically three different ways the server can process the input to and
output from your CGI program. You can configure the server to control which
mode is used by specifying an overall server directive (CGIConvMode) or an
optional parameter on the Exec or Post-Script script directives:
CGIConvMode Mode
Exec request-template program-path [server-IP-address or hostname] [Mode]
Post-Script program_path_and_name [server-IP-address or hostname] [Mode]

Where Mode is one of the following:
%%MIXED%% or %%MIXED/MIXED%% This is the default.
%%EBCDIC%% or %%EBCDIC/MIXED%%

%%EBCDIC/EBCDIC%%

%%BINARY%% or %%BINARY/MIXED%%

%%BINARY/EBCDIC%%

%%BINARY/BINARY%%

%%EBCDIC_JCD%% or %%EBCDIC_JCD/MIXED%%

%%EBCDIC_JCD/EBCDIC%%

The CGIMode can be thought of as 2 logical pieces. The input mode and output
mode. They are separated by the ″/″. If only the input mode is provided, the
output mode is defaulted to MIXED for compatibility.

In addition, the system provides the following CGI environment variables to the
CGI program:
v CGI_MODE - which input conversion mode the server is using (%%MIXED%%,

%%EBCDIC%%, %%BINARY%%, or %%EBCDIC_JCD%%).
v CGI_ASCII_CCSID - from which ASCII CCSID was used to convert the data
v CGI_EBCDIC_CCSID - which EBCDIC CCSID the data was converted into
v CGI_OUTPUT_MODE - which output conversion mode the server is using

(%%MIXED%%, %%EBCDIC%%, or %%BINARY%%)

The following section explains CGI input conversion modes in more detail.

CGI Input Conversion Modes
MIXED

This mode is the default mode of operation for the server. The system
converts values for CGI environment variables to EBCDIC CCSID 37,
including QUERY_STRING. The system converts stdin data to the CCSID
of the job. However, the system still represents the encoded characters
“%xx” by the ASCII 819 octet. This requires the CGI program to convert
these further into EBCDIC to process the data. For more information, see
symptom, Special characters are not being converted or handled as expected in
“Chapter 10. Troubleshooting your CGI programs” on page 139.

EBCDIC

6 Web Programming Guide V4R5

In this mode, the server will convert everything into the EBCDIC CCSID of
the job. The server checks the Entity bodies for a charset tag. If found, the
server will convert the corresponding ASCII CCSID to the EBCDIC CCSID
of the job. If the server does not find a charset tag, it uses the value of the
DefaultNetCCSID configuration directive as the conversion CCSID. In
addition, the system converts escaped octets from ASCII to EBCDIC,
eliminating the need to perform this conversion in the CGI program.

BINARY

In this mode, the server processes environment variables (except
QUERY_STRING) the same way as EBCDIC mode. The server performs no
conversions on either QUERY_STRING or stdin data.

EBCDIC_JCD

Japanese browsers can potentially send data in one of three code pages, JIS
(ISO-2022-JP), S-JIS (PC-Windows), or EUC (UNIX). In this mode, the
server uses a well-known JCD utility to determine which codepage to use
(if not explicitly specified by a charset tag) to convert stdin data.

Table 1 summarizes the type of conversion that is performed by the server for each
CGI mode.

Table 1. Conversion action for text in CGI Stdin.

CGI_MODE Conversion Stdin
encoding

Environment
variables

Query_String
encoding

argv
encoding

%%BINARY%% None No conversion FsCCSID No conversion No
conversion

%%EBCDIC%% NetCCSID to
FsCCSID

FsCCSID FsCCSID FsCCSID FsCCSID

%%EBCDIC%% - with
charset tag received

Calculate target
EBCDIC CCSID
based on received
ASCII charset tag

EBCDIC
equivalent of
received
charset

FsCCSID FsCCSID FsCCSID

%%EBCDIC_JCD%% Detect input based
on received data.
Convert data to
FsCCSID

FsCCSID FsCCSID Detect ASCII
input based on
received data.
Convert data to
FsCCSID

Detect ASCII
input based
on received
data. Convert
data to
FsCCSID

%%MIXED%%
(Compatability mode)

NetCCSID to
FsCCSID (receive
charset tag is
ignored)

FsCCSID with
ASCII escape
sequences

CCSID 37 CCSID 37 with
ASCII escape
sequences

CCSID37 with
ASCII escape
sequences

DBCS Considerations
URL-encoded forms containing DBCS data could contain ASCII octets that
represent parts of DBCS characters. The server can only convert non-encoded
character data. This means that it must un-encode the double-byte character set
(DBCS) stdin and QUERY_STRING data before performing the conversion. In
addition, it has to reassemble and re-encode the resulting EBCDIC representation
before passing it to the CGI program. Because of this extra processing, CGI
programs that you write to handle DBCS data may choose to receive the data as
BINARY and perform all conversions to streamline the entire process.

Chapter 1. Writing Common Gateway Interface Programs 7

Using the EBCDIC_JCD mode: The EBCDIC_JCD mode determines what
character set is being used by the browser for a given request. This mode is also
used to automatically adjust the ASCII/EBCDIC code conversions used by the web
server as the request is processed.

After auto detection, the %%EBCDIC_JCD%% mode converts the stdin and
QUERY_STRING data from the detected network CCSID into the correct EBCDIC
CCSID for Japanese. The default conversions configured for the server instance are
overridden. The DefaultFsCCSID directive or the -fsccsid startup parameter
specifies the default conversions. The startup FsCCSID must be a Japanese CCSID
(5026 or 5035).

The possible detected network code page is Shift JIS, eucJP, and ISO-2022-JP. The
following are the associated CCSIDs for each code page:
Shift JIS (See note 1)
=========
CCSID 932: IBM PC (old JIS sequence, OS/2 J3.X/4.0, IBM Windows J3.1)
CCSID 942: IBM PC (old JIS sequence, OS/2 J3.X/4.0)
CCSID 943: MS Shift JIS (new JIS sequence, OS/2 J4.0

MS Windows J3.1/95/NT)

eucJP
=====
CCSID 5050: Extended UNIX Code (Japanese)

ISO-2022-JP (See note 2)
===========
CCSID 5052: Subset of RFC 1468 ISO-2022-JP (JIS X 0201 Roman and

JIS X 0208-1983) plus JIS X 0201 Katakana.

CCSID 5054: Subset of RFC 1468 ISO-20220JP (ASCII and JIS X 0208-1983)
plus JIS X 0201 Katakana.

The detected network CCSID is available to the CGI program. The CCSID is stored
in the CGI_ASCII_CCSID environment variable. When JCD can not detect, the
default code conversion is done as configured (between NetCCSID and FsCCSID).
(See note 3.)

Since the code page of Stdin and QUERY_STRING are encoded according to the
web client’s outbound code page, we recommend using the following
configuration value combinations when you use the %%EBCDIC_JCD%% mode.
Startup FsCCSID Startup NetCCSID Description
--------------- ---------------- ----------------------
5026/5035 (See note 4) <-> 943 Default: MS Shift JIS
5026/5035 (See note 4) <-> 942 Default: IBM PC
5026/5035 (See note 4) <-> 5052/5054 Default: ISO-2022-JP

Using CCSID 5050(eucJP) for the startup NetCCSID, is not recommended. When
5050 is specified for the startup NetCCSID, the default code conversion is done
between FsCCSID and 5050. This means that if JCD cannot detect a code page, JCD
returns 5050 as the default network CCSID. Most browser’s use a default outbound
code page of Shift JIS or ISO-2022-JP, not eucJP.

If the web client sends a charset tag, JCD gives priority to the charset tag. Stdout
function is the same. If the charset/ccsid tag is specified in the Content-Type field,
stdout gives priority to charset/ccsid tag. Stdout also ignores the JCD detected
network CCSID. (See note 5.)

8 Web Programming Guide V4R5

Notes:

1. If startup NetCCSID is 932 or 942, detected network, Shift JIS’s CCSID is the
same as startup NetCCSID. Otherwise, Shift JIS’s CCSID is 943.
Startup NetCCSID Shift JIS (JCD detected CCSID)
---------------- ------------------------------
932 932
942 942
943 943
5052 943
5054 943
5050 943

2. Netscape Navigator 3.x sends the alphanumeric characters by using JIS X 0201
Roman escape sequence (CCSID 5052) for ISO-2022-JP. Netscape Communicator
4.x sends the alphanumeric characters by using ASCII escape sequence (CCSID
5054) for ISO-2022-JP.

3. JCD function has the capability to detect EUC and SBCS Katakana, but it is
difficult to detect them. IBM® recommends that you do not use SBCS Katakana
and EUC in CGI.

4. CCSID 5026 assigns lowercase alphabet characters on special code point. This
often causes a problem with lowercase alphabet characters. To avoid this
problem, do one of the following:
v Do not use lowercase alphabet literals in CGI programs if the FsCCSID is

5026.
v Use CCSID 5035 for FsCCSID.
v Use the Charset/CCSID tag as illustrated in the following excerpt of a CGI

program:
main(){

printf("Content-Type: text/html; Charset=ISO-2022-JP\n\n");
...

}

v Do the code conversions in the CGI program. The following sample C
program converts the literals into CCSID 930 (the equivalent to CCSID 5026)
main(){

printf("Content-Type: text/html\n\n);

#pragama convert(930)
printf("<html>");
printf("This is katakana code page\n");

#pragama convert(0)
...

}

5. When the web client sends a charset tag, the network CCSID becomes the
ASCII CCSID associated with Multipurpose Internet Mail Extensions (MIME)
charset header. The charset tag ignores the JCD detected CCSID. When the
Charset/ccsid tag is in the Content-Type header generated by the CGI program,
the JCD-detected CCSID is ignored by this charset/ccsid. Stdout will not
perform a conversion if the charset is the same as the MIME’s charset. Stdout
will not perform a conversion if the CCSID is ASCII. Stdout will perform code
conversion if the CCSID is EBCDIC. Because the environment variables and
stdin are already stored in FsCCSID, ensure that you are consistent between the
FsCCSID and the Content-Type header’s CCSID.

CGI Output Conversion Modes
The CgiConv mode includes an output mode. This section explains CGI output
conversion modes in more detail.

Chapter 1. Writing Common Gateway Interface Programs 9

%%MIXED%%

In this mode HTTP header output is in CCSID 37. However, the escape
sequence must be the EBCDIC representative of the ASCII code point for
the 2 characters following the ″%″ in the escape sequence. An example of a
HTTP header that may contain escape sequences is the Location header.

%%EBCDIC%%

In this mode HTTP header output is in CCSID 37. However, the escape
sequence must be the EBCDIC representative of the EBCDIC code point for
the 2 characters following the ″%″ in the escape sequence. An example of a
HTTP header that may contain escape sequences is the Location header.

%%BINARY%%

In this mode HTTP header output is in CCSID 819 with the escape
sequences also being the ASCII representative of the ASCII code point. An
example of a HTTP header that may contain escape sequences is the
Location header.

For HTTP body standard-output (stdout) data that is sent from the CGI program,
the server recognizes and uses the charset or CCSID parameter on the text/*
Content-Types. If you specify ASCII, the server performs no conversions on the
data. Otherwise, the system uses the Content-Type value instead of the
DefaultFsCCSID on conversions back to the browser. The system sets an
appropriate charset tag for all text/* Content-Types that it sends back to the
browser. The exception to this is %%MIXED%%, %%MIXED/MIXED%%,
%%BINARY/BINARY%% modes and when the charset or CCSID parameter is set
to 65535.

Table 2 summarizes the type of conversion that is performed and the charset tag
that is returned to the browser by the server.

Table 2. Conversion action and charset tag generation for text in CGI Stdout.

CGI Stdout CCSID/Charset in HTTP header Conversion action Server reply charset tag

EBCDIC CCSID/Charset Calculate EBCDIC to ASCII
conversion based on supplied
EBCDIC CCSID/Charset

Calculated ASCII charset

ASCII CCSID/Charset No conversion Stdout CCSID/Charset as Charset

65535 No conversion None

None (%%BINARY%%,
%%BINARY/MIXED%%, or
%%BINARY/EBCDIC%%)

Default Conversion - FsCCSID to
NetCCSID

NetCCSID as charset

None (%%BINARY/BINARY%%) No Conversion None

None (%%EBCDIC%%,
%%EBCDIC/MIXED%%, or
%%EBCDIC/EBCDIC%%)

Default Conversion - FsCCSID to
NetCCSID

NetCCSID as charset

None (%%EBCDIC%%,
%%EBCDIC/MIXED%%, or
%%EBCDIC/EBCDIC%% with charset tag
received on HTTP request)

Use inverse of conversion
calculated for stdin

Charset as received on HTTP
request

None (%%EBCDIC_JCD%%,
%%EBCDIC_JCD/MIXED%%, or
%%EBCDIC_JCD/EBCDIC%%)

Default Conversion - FsCCSID to
NetCCSID

NetCCSID as charset

10 Web Programming Guide V4R5

Table 2. Conversion action and charset tag generation for text in CGI Stdout. (continued)

CGI Stdout CCSID/Charset in HTTP header Conversion action Server reply charset tag

None (%%MIXED%% or
%%MIXED/MIXED%%)

Default Conversion - FsCCSID to
NetCCSID

None (compatibility mode)

Invalid CGI error 500 generated by server

The server also sets an environment variable CGI_OUTPUT_MODE to reflect the
setting for the CGI output mode. It contains the CGI output conversion mode the
server is using for this request. Valid values are %%EBCDIC%%, %%MIXED%%, or
%%BINARY%%. The program can use this information to determine what
conversion, if any, the server performs on CGI output.

Returning Output from the Server
When the CGI program is finished, it passes the resulting response to the server by
using standard output (stdout). The server interprets the response and sends it to
the browser.

A CGI program writes a CGI header that is followed by an entity body to standard
output. The CGI header is the information that describes the data in the entity
body. The entity body is the data that the server sends to the client. A single
newline character always ends the CGI header. The newline character for ILE/C is
\n. For ILE/RPG or ILE/COBOL, it is hexadecimal ’15’. The following are some
examples of Content-Type headers:
Content-Type: text/html\n\n
Content-Type: text/html; charset=iso-8859-2\n\n

If the response is a static document, the CGI program returns either the URL of the
document using the CGI Location header or returns a Status header. The CGI
program does not have an entity body when using the Location header. If the host
name is the local host, the HTTP server will retrieve the specified document that
the CGI program sent. It will then send a copy to the web browser. If the host
name is not the local host, the HTTP processes it as a redirect to the web browser.
For example:
Location: http://www.acme.com/products.html\n\n

The Status header should have a Content_Type: and a Status in the CGI header.
When Status is in the CGI header, an entity body should be sent with the data to
be returned by the server. The entity body data contains information that the CGI
program provides to a client for error processing. The Status line is the Status with
an HTTP 3 digit status code and a string of alphanumeric characters (A-Z, a-z, 0-9
and space). The HTTP status code must be a valid 3 digit number from the
HTTP/1.1 specification.

Note: The newline character \n ends the CGI header.
CONTENT-TYPE: text/html\n
Status: 600 Invalid data\n
\n
<html><head><title>Invalid data</title>
</head><body>
<h1>Invalid data typed</h1>

<pre>
The data entered must be valid numeric digits for id number

</pre>
</body></html>

Chapter 1. Writing Common Gateway Interface Programs 11

How CGI Programs Work
Most CGI programs include the following three stages:
v Parsing CGI programs
v Data manipulation within a CGI program
v Response generation by a CGI program

Parsing
Parsing is the first stage of a CGI program. In this stage, the program takes the
data from QUERY_STRING environment variable, command line arguments using
argv() or standard input. When the method is GET, the system reads the data from
the QUERY_STRING environment variable or command line arguments by using
argv(). There is no way to determine the length of data in QUERY_STRING. The
system encodes the QUERY_STRING data in the request header.

An example of data read in the QUERY_STRING variable (%%MIXED%% mode):
NAME=Eugene+T%2E+Fox&ADDR=etfox%40ibm.net&INTEREST=RCO

Parsing breaks the fields at the ampersands and decodes the ASCII hexadecimal
characters. The results look like this:
NAME=Eugene T. Fox
ADDR=etfox@ibm.net
INTEREST=RCO

You can use the QtmhCvtDb API to parse the information into a structure. The
CGI program can refer to the structure fields. If using %%MIXED%% input mode,
the “%xx” encoding values are in ASCII and must be converted into the “%xx”
EBCDIC encoding values before calling QtmhCvtDb. If using %%EBCDIC%%
mode, the server will do this conversion for you. The system converts ASCII
“%xx” first to the ASCII character and then to the EBCDIC character. Ultimately,
the system sets the EBCDIC character to the “%xx” in the EBCDIC CCSID. For
code samples, use the following URL to the AS/400 web site:
http://www.as400.ibm.com/tstudio/index.htm.

When the method is post, the system reads the data from standard input. Before
the CGI attempts to read standard input, it must check environment variables
REQUEST_METHOD and CONTENT_LENGTH. Read standard input only when
the REQUEST_METHOD is POST. The read must specify no more than
CONTENT_LENGTH bytes. Attempts to specify more than CONTENT_LENGTH
bytes on reading standard input are not defined.

Data manipulation
Data manipulation is the second stage of a CGI program. In this stage, the
program takes the parsed data and performs the appropriate action. For example, a
CGI program designed to process an application form might perform one of the
following functions:
1. Take the input from the parsing stage
2. Convert abbreviations into more meaningful information
3. Plug the information into an e-mail template
4. Use SNDDST to send the e-mail.

Response generation
Response generation is the final stage of a CGI program. In this stage, the program
formulates its response to the web server, which forwards it to the browser. The
response contains MIME headers that vary depending on the type of response.

12 Web Programming Guide V4R5

With a search, the response might be the URLs of all the documents that met the
search value. With a request that results in e-mail, the response might be a
message that confirms that the system actually sent the e-mail.

Environment variables
Before you begin writing your CGI program, you need to understand the format in
which the server will pass the data. The server receives the URL-encoded
information and, depending on the type of request, passes the information to the
CGI program. The server does this by using environment variables, command line
arguments, or standard input.

A CGI application program should be able to handle a NULL value when getting
an environment variable. For example, when the CGI program is trying to do a
getenv(″CONTENT_LENGTH″) and the method is GET, the value would be
returned NULL. This is because CONTENT_LENGTH is only defined in method
POST (to describe the length of standard input).

The system supports the following environment variables:

AUTH_TYPE
If the server supports client authentication and the script is a protected
script, this environment variable contains the method that is used to
authenticate the client. For example:
Basic

CGI_ASCII_CCSID
Contains the ASCII CCSID the server used when converting CGI input
data. If the server did not perform any conversion, (for example, in
%%BINARY%% mode), the server sets this value to the DefaultNetCCSID
configuration directive value.

CGI_MODE
Contains the CGI conversion mode the server is using for this request.
Valid values are %%EBCDIC%%, %%MIXED%%, %%BINARY%%, or
%%EBCDIC_JCD%%. The program can use this information to determine
what conversion, if any, was performed by the server on CGI input data
and what format that data is currently in.

CGI_EBCDIC_CCSID
Contains the EBCDIC CCSID under which the current server job is running
(DefaultFsCCSID configuration directive). It also represents the current job
CCSID that is used during server conversion (if any) of CGI input data.

CONTENT_LENGTH
When the method of POST is used to send information, this variable
contains the number of characters. Servers typically do not send an
end-of-file flag when they forward the information by using stdin. If
needed, you can use the CONTENT_LENGTH value to determine the end
of the input string. For example:
7034

CONTENT_TYPE
When information is sent with the method of POST, this variable contains
the type of data included. You can create your own content type in the
server configuration file and map it to a viewer. For example:
Application/x-www-form-urlencoded

Chapter 1. Writing Common Gateway Interface Programs 13

GATEWAY_INTERFACE
Contains the version of CGI that the server is using. For example:
CGI/1.1

HTTP_ACCEPT
Contains the list of MIME types the browser accepts. For example:
text/html

HTTP_USER_AGENT
Contains the name of your browser (web client). It includes the name and
version of the browser, requests that are made through a proxy, and other
information. For example:
Netscape Navigator dll /v3.0

IBM_CCSID_VALUE
The CCSID under which the current server job is running.

PATH_INFO
Contains the additional path information as sent by the web browser. For
example:
/ballyhoo

PATH_TRANSLATED
Contains the decoded or translated version of the path information that is
contained in PATH_INFO, which takes the path and does any
virtual-to-physical mapping to it. For example:
/wwwhome/ballyhoo

QUERY_STRING
When information is sent using a method of GET, this variable contains the
information in a query that follows the ?. The string is coded in the
standard URL format of changing spaces to “+” and encoding special
characters with “%xx” hexadecimal encoding. The CGI program must
decode this information. For example:
NAME=Eugene+T%2E+Fox&ADDR=etfox%7Cibm.net&INTEREST=xyz

REMOTE_ADDR
Contains the IP address of the remote host (web browser) that is making
the request, if available. For example:
9.23.06.8

REMOTE_HOST
Contains the host name of the web browser that is making the request, if
available. For example:
raleigh.ibm.com

REMOTE_IDENT
Contains the user ID of the remote user. For example:
Jillx

REMOTE_USER
If you have a protected script and the server supports client authentication,
this environment variable contains the user name that is passed for
authentication. For example:
Jill

REQUEST_METHOD
Contains the method (as specified with the METHOD attribute in an
HTML form) that is used to send the request. For example:
GET or POST

14 Web Programming Guide V4R5

SCRIPT_NAME
A virtual path to the program being run. Use this for self-referring URLs.

SERVER_NAME
Contains the server host name or IP address of the server. For example:
www.ibm.com

SERVER_PORT
Contains the port number to which the client request was sent. For
example:
80

SERVER_PROTOCOL
Contains the name and version of the information protocol that is used to
make the request. For example:
HTTP/1.0

SERVER_SOFTWARE
Contains the name and version of the information server software that is
answering the request. For example:
IBM-Secure-ICS/AS/400 Secure HTTP Server

Requests from Standard Search (ISINDEX) Documents
ISINDEX is an HTML tag that identifies the document as a standard search
document and causes the browser to automatically generate an entry field. When
information is sent from an ISINDEX document, the server takes the appended
data (the information following the ?), breaks it at the pluses (+), and sends the
data to the CGI program as command line arguments (argv). For example:
<ISINDEX>

Note: It is possible to write CGI scripts that display all environment variables. At
times these variables may include sensitive data such as user IDs and
passwords for various products. Consequently, you must be careful about
displaying environment variables in your CGI scripts, and you must be
careful about who has access to them.

Passing SSL Environment Variables to a CGI Program
You can use the following SSL-related environment variables in CGI programs.

HTTPS
Returns ON if the system has completed an SSL handshake. It returns OFF
if the exchange of signals to set up communications between two modems
has failed. For example:
OFF

HTTPS_CLIENT_CERT
The entire certificate passed to the server from the client browser when
SSL Client authentication is enabled. The format of the certificate is a
BASE64 encoded string that represents the DER format of the X.509
certificate.

HTTPS_CLIENT_CERT_COUNTRY
The Country Code from the client certificate’s distinguished name. For
example:
US

Chapter 1. Writing Common Gateway Interface Programs 15

HTTPS_CLIENT_CERT_COMMON_NAME
The Common Name from the client certificate’s distinguished name. For
example:
John Smith

HTTPS_CLIENT_CERT_ISSUER_COMMON_NAME
The Common Name of the Certificate Authority that issued the client’s
certificate. For example:
Digital ID

HTTPS_CLIENT_CERT_ISSUER_COUNTRY
The Country code of the Certificate Authority that issued the client’s
certificate. For example:
US

HTTPS_CLIENT_CERT_ISSUER_LOCALITY
The Locality of the Certificate Authority that issued the client’s certificate.
For example:
50265

HTTPS_CLIENT_CERT_ISSUER_STATE_OR_PROVINCE
The State or Province of the Certificate Authority that issued the client’s
certificate. For example:
Iowa

HTTPS_CLIENT_CERT_ISSUER_ORG_UNIT
The Organizational Unit of the Certificate Authority that issued the client’s
certificate. For example:
Department of Client Certificates

HTTPS_CLIENT_CERT_ISSUER_ORGANIZATION
The Organization name of the Certificate Authority that issued the client’s
certificate. For example:
Roadrunner CA

HTTPS_CLIENT_CERT_LEN
The Length of the certificate passed in HTTPS_CLIENT_CERT.

HTTPS_CLIENT_CERT_LOCALITY
The Locality (zip code in the US) from the client certificate’s distinguished
name. For example:
55901

HTTPS_CLIENT_CERT_SERIAL_NUM
The serial number assigned by the issuing Certificate Authority. For
example:
92787829

HTTPS_CLIENT_CERT_ORG_UNIT
The Organizational Unit name from the client certificate’s distinguished
name. For example:
Department of Coyote products

HTTPS_CLIENT_CERT_ORGANIZATION
The Organization name from the client certificate’s distinguished name. For
example:
Acme Corporation

16 Web Programming Guide V4R5

HTTPS_CLIENT_CERT_STATE_OR_PROVINCE
The State or Province from the client certificate’s distinguished name. For
example:
Minnesota

HTTPS_KEYSIZE
Returns the number of bits in the session key that is established by SSL
after a completed exchange of signals to set up communications between
two modems. This value is blank if HTTPS=OFF. For example:
512

Examples of key sizes are Export {40} or {128}.

HTTPS_PORT
If a valid security product is installed and the SSLMode directive is
SSLMode=ON, this environment variable contains the SSL port number the
server is listening on. For example:
443

CGI Programs and AS/400 Activation Groups
The following section is intended to give a brief overview of AS/400 Activation
Groups.

Note: It is very important to become familiar with the details of activation groups
prior to developing or porting a CGI application that will use this support.

AS/400 Activation Groups
Program activation is the process that is used to prepare a program to run. The
system must activate AS/400 ILE programs before they can be run. Program
activation includes the allocation and initialization of static storage for the program
in addition to completing the binding of programs to service programs.

Program activation is not an AS/400 unique concept. All modern computer
operating systems must perform program initialization and load. What is unique to
AS/400 is the concept of Activation Groups. All ILE programs and service
programs are activated within an activation group. This substructure contains the
resources necessary to run the program. The resources that are contained and are
managed with an activation group include:
v Static and automatic program variables
v Dynamic storage
v Temporary data management resources (For example, open files and SQL

cursors)
v Certain types of exception handlers and ending procedures

Run-time creation of ILE activation groups is controlled by specifying an activation
group attribute when your program or service program is created. The attribute is
specified by using the ACTGRP parameter on the CRTPGM or CRTSRVPGM
command. The valid options for this attribute include user-named, *NEW, and
*CALLER. The following is a brief description of these options:

user-named - A named activation group allows you to manage a collection of
ILE programs and ILE service programs as one application. The activation
group is created when it is first needed. All programs and service programs
that specify the same activation group name use it then.

Chapter 1. Writing Common Gateway Interface Programs 17

*NEW- The name for this activation group is selected by ILE and will always
be unique. System-named activation groups are always deleted when the high
level language returns.
*CALLER - Specifying *CALLER causes the ILE program or service program to
be activated within the activation group of the calling program. A new
activation group is never created with this attribute.

*NEW is the standard behavior that can be expected on other systems such as
UNIX®.

Notes:

1. When you create a persistent CGI program, you must specify a named
activation group.

2. CGI programs that are not persistent should not refer to job-level scoped
resources.

For additional information about activation groups see, ILE Concepts, SC41-5606
book.

CGI Considerations
There are advantages to running CGI programs in either a user-named or
*CALLER activation group. The performance overhead associated with activating a
CGI every time that is requested can be drastically reduced. It is important to
understand that because the system does not delete user-named activation groups,
normal high level language end verbs cannot provide complete end processing. For
example, the system will not close open files, and the system will not return the
static and heap storage that are allocated by a program. The program must manage
these resources explicitly. This will be especially important when moving CGI
programs that rely on end processing to function properly.

Note: When you activate multi-threaded CGI on your web server, you get multiple
thread support for your CGI application Your CGI application must end all
of its threads before returning to the server. When using multi-thread
capable CGI, you need to put the CGI program in a new or named
activation group.

The following section shows examples which will work fine running in a *NEW
activation group, however will cause problems if run in a user-named or *CALLER
activation group.

Activation Group Problem Examples

Note
The following examples are not general CGI programming examples. For
general CGI programming examples, see “Chapter 6. Sample programs (in
Java, C, and RPG)” on page 89.

In the following example a CGI program when run in a *NEW activation group,
would write Hello World to the browser. What is important to understand is that
this application is taking advantage of job end processing to delete the stdio
buffers that are used to buffer the stdout data.

You could build the following CGI program to run in either a user-named or
*CALLER activation group. In such an instance, the server will not process the

18 Web Programming Guide V4R5

information that was written to stdout. This will cause the web browser to display
a ″Document Contains No Data″ error message. Another application could run
again in the same activation group that properly erased stdout. In this instance, the
data that has been buffered from previous calls would be sent.
#include <stdio.h>
void main(void) {

/***/
/* Write header information. */
/***/
printf("Content-type: text/html\n\n");

/***/
/* Write header information. */
/***/
printf("Hello World\n");

}

End processing may not erase stdio buffers so the application must erase the
stdout with a fflush(stdout) call. The following example will work regardless of the
activation group specification:
#include <stdio.h>
void main(void) {

/***/
/* Write header information. */
/***/
printf("Content-type: text/html\n\n");

/***/
/* Write header information. */
/***/
printf("Hello World\n");

/*---*/
/* FIX: Flush stdout. */
/*---*/
fflush(stdout);

}

When run in a *NEW activation group, this example CGI would read
CONTENT_LENGTH bytes of data from stdin and write this back out to stdout.
The system has allocated the buffer that is used to hold the data with a malloc.
Like the example that is previously shown, this application is relying on several
aspects of job end processing to function properly.

If this CGI program were built to run in either a user-named or *CALLER
activation group, the following problems would occur:
v As with the simple example that is previously shown, the application is not

erasing stdout. This would cause the web browser to display a ″Document
Contains No Data″ error message. You could run another application again in
the same activation group that properly erased stdout. This would send the data
that has been buffered from previous calls.

v Stdin is buffered similar to stdout. If the contents of stdin are not erased, the
stdin data on the second and all following calls of the CGI program will be
unpredictable and the contents may at times contain information from
subsequent requests.

Chapter 1. Writing Common Gateway Interface Programs 19

v The heap storage allocated using malloc is not being freed. Over time, a memory
leak error like this could use significant amounts of memory. This is a common
application error that only surfaces when the application is not running in a
*NEW activation group.

/***/
/* */
/* CGI Example program. */
/* */
/***/

#include
void main(void)
{

char* stdinBuffer;
char* contentLength;
int numBytes;
int bytesRead;
FILE* pStdin;

/**/
/* Write the header. */
/**/
printf("Content-type: text/html\n\n");

/**/
/* Get the length of data on stdin. */
/**/
contentLength = getenv("CONTENT_LENGTH");

if (contentLength != NULL) {

/***/
/* Allocate storage and clear the storage to hold the data. */
/***/
numBytes = atoi(contentLength);
stdinBuffer = (char*)malloc(numBytes+1);
if (stdinBuffer)

memset(stdinBuffer, 0x00, numBytes+1);

/***/
/* Read the data from stdin and write back to stdout. */
/***/
bytesRead = fread(stdinBuffer, 1, numBytes, pStdin);
stdinBufferþbytesRead+1þ = '\0';
printf("%s", stdinBuffer);

} else
printf("Error getting content length\n");

return;

}

The following example shows the changes that would be required to this
application to allow it to run in a user-named or *CALLER activation group:
/***/
/* */
/* CGI Example program with changes to support user-named */
/* and *CALLER ACTGRP. */
/* */
/***/

#include
void main(void)

20 Web Programming Guide V4R5

{

char* stdinBuffer;
char* contentLength;
int numBytes;
int bytesRead;
FILE* pStdin;

/**/
/* Write the header. */
/**/
printf("Content-type: text/html\n\n");

/**/
/* Get the length of data on stdin. */
/**/
contentLength = getenv("CONTENT_LENGTH");

if (contentLength != NULL) {

/***/
/* Allocate storage and clear the storage to hold the data. */
/***/
numBytes = atoi(contentLength);
stdinBuffer = (char*)malloc(numBytes+1);
if (stdinBuffer)

memset(stdinBuffer, 0x00, numBytes+1);

/*---*/
/* FIX 2: Reset stdin buffers. */
/*---*/
pStdin = freopen("", "r", stdin);

/***/
/* Read the data from stdin and write back to stdout. */
/***/
bytesRead = fread(stdinBuffer, 1, numBytes, pStdin);
stdinBufferþbytesRead+1þ = '\0';
printf("%s", stdinBuffer);

/*---*/
/* FIX 3: Free allocated memory. */
/*---*/
free(stdinBuffer);

} else
printf("Error getting content length\n");

/*---*/
/* FIX 1: Flush stdout. */
/*---*/
fflush(stdout);
return;

}

Chapter 1. Writing Common Gateway Interface Programs 21

22 Web Programming Guide V4R5

Chapter 2. Application Programming Interfaces

APIs for CGI applications 24
Get Environment Variable (QtmhGetEnv) API . . 25

Required parameter group 25
Error messages 26

Put Environment Variable (QtmhPutEnv) API . . 26
Required parameter group 26
Error messages 27

Read from Stdin (QtmhRdStin) API 27
Required parameter group 28
Error Messages 28

Write to Stdout (QtmhWrStout) API 29
Required parameter group 29
Error messages 29

Convert to DB (QtmhCvtDB) API 30
Required parameter group 31
Error messages 32

Parse QUERY_STRING Environment Variable or
Post stdin data (QzhbCgiParse) API 32

Required parameter group 33
CGII0200 Format 35
Field descriptions 35
Error messages 36

Produce Full HTTP Response (QzhbCgiUtils) API 36
Error messages 38

Configuration APIs 38
Convert URL to Path (QzhbCvtURLtoPath) API 38

Authorities and locks 38
Required parameter group 39
Error messages 40

Retrieve Directive (QzhbRetrieveDirective) API 40
Authorities and locks 40
Required parameter group 40
Error messages 42

Retreive a list of all Configuration Names
(QzhbGetConfigNames) API 42

Authorities and locks 42
Required parameter group 42
Error messages 43

Create a Configuration (QzhbCreateConfig) API 43
Authorities and locks 43
Required parameter group 43
Error messages 44

Delete a Configuration (QzhbDeleteConfig) API 44
Authorities and locks 44
Required parameter group 44
Error messages 44

Read a Configuration File into Memory
(QzhbOpenConfig) API 45

Authorities and locks 45
Required parameter group 45
Error messages 46

Free a Configuration File from Memory
(QzhbCloseConfig) API 46

Authorities and locks 46
Required parameter group 46
Error messages 47

Search for a Main Directive (QzhbFindDirective)
API 47

Authorities and locks 47
Required parameter group 47
Error messages 48

Search for a Subdirective under Main Directive
(QzhbFindSubdirective) API 49

Authorities and locks 49
Required parameter group 49
Error messages 50

Return Details of a Main Directive or
Subdirective (QzhbGetDirectiveDetail) API . . . 51

Authorities and locks 51
Required parameter group 51
Error messages 52

Add a Main Directive or Subdirective
(QzhbAddDirective) API 52

Authorities and locks 52
Required parameter group 52
Error messages 54

Remove a Main Directive or Subdirective
(QzhbRemoveDirective) API 54

Authorities and locks 54
Required parameter group 54
Error messages 55

Replace a Main Directive or Subdirective
(QzhbReplaceDirective) API 55

Authorities and locks 55
Required parameter group 55
Error messages 56

Server instance APIs 56
Retrieve a list of all Server Instances
(QzhbGetInstanceNames) API 56

Authorities and locks 56
Required parameter group 56
INSN0100 Format 57
Field descriptions 57
Error messages 57

Look up Server Instance Data
(QzhbGetInstanceData) API 58

Authorities and locks 58
Required parameter group 58
INSD0100 Format 59
Field descriptions 59
Error messages 60

Change Server Instance Data
(QzhbChangeInstanceData) API 60

Authorities and locks 61
Required parameter group 61
Error messages 61

Create a Server Instance (QzhbCreateInstance)
API 62

Authorities and locks 62
Required parameter group 62
Error messages 63

© Copyright IBM Corp. 1997, 2000 23

Delete a Server Instance (QzhbDeleteInstance)
API 63

Authorities and locks 63
Required parameter group 63
Error messages 64

Group file APIs 64
Create a new Group File (QzhbCreateGroupList)
API 64

Authorities and locks 64
Required parameter group 65
Error messages 65

Read a Group File into Memory
(QzhbOpenGroupList) API 65

Authorities and locks 65
Required parameter group 66
Error messages 66

Free Group File from Memory
(QzhbCloseGroupList) API 67

Authorities and locks 67
Required parameter group 67
Error messages 67

Retrieve the next Group in the Group List
(QzhbGetNextGroup) API 68

Authorities and locks 68
Required parameter group 68
Error messages 68

Locate a named group in a Group List
(QzhbFindGroupInList) API 69

Authorities and locks 69
Required parameter group 69
Error messages 69

Retrieve the Name of a Group
(QzhbGetGroupName) API 70

Authorities and locks 70
Required parameter group 70
Error messages 70

Add a new Group to the end of a Group List
(QzhbAddGroupToList) API 71

Authorities and locks 71
Required parameter group 71
Error messages 72

Remove a Group from a Group List
(QzhbRemoveGroupFromList) API 72

Authorities and locks 72
Required parameter group 72
Error messages 72

Retrieve the next User in the Group
(QzhbGetNextUser) API 73

Authorities and locks 73
Required parameter group 73
Error messages 73

Locate a User in a Group
(QzhbFindUserInGroup) API 74

Authorities and locks 74
Required parameter group 74
Error messages 75

Retrieve the Name of a User
(QzhbGetUserString) API 75

Authorities and locks 75
Required parameter group 75
Error messages 76

Add a new user to the end of a Group
(QzhbAddUserToGroup) API 76

Authorities and locks 76
Required parameter group 77
Error messages 77

Remove a User or Element from a Group
(QzhbRemoveUserFromGroup) API 77

Authorities and locks 78
Required parameter group 78
Error messages 78

This chapter includes detailed information on application programming interfaces
(APIs) used with the IBM HTTP Server for AS/400.

AS/400 supports these APIs in C++, Java, Rexx, ILE C, ILE COBOL, and ILE RPG
programming languages. Although all APIs are supported in all of these languages,
most C CGI applications will only need to use QtmhCvtDB, QzhbCgiParse, or
QzhbCgiUtils. This is because ANSI C can work with stdin, stdout, and
environment variables directly. ILE C CGI applications use ANSI C function calls
to work with stdin, stdout, environment variables, and string functions for parsing
stdin and environment variable data.

APIs for CGI applications
To use these APIs in a CGI application, you must bind the CGI program to
*SRVPGM QZHBCGI in library QHTTPSVR. ILE C programs must include header
file QSYSINC/H(QZHBCGI). AS/400 CGI application programs must be written
and compiled in Integrated Language Environment® (ILE)/C, ILE/RPG, and
ILE/COBOL.

24 Web Programming Guide V4R5

Get Environment Variable (QtmhGetEnv) API

Parameters
Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Length of response Output Binary(4)
4 Request variable Input Char(*)
5 Length of request variable Input Binary(4)
6 Error Code I/O CHAR(*)

The QtmhGetEnv API allows you to get the value set by the server for a particular
HTTP environment variable.

Required parameter group
Receiver variable

OUTPUT:CHAR(*)

The output variable that contains the value set by the server for the requested
environment variable. In CGI input mode %%MIXED%%, this value will be in
CCSID 37; otherwise, it will be in the CCSID of the current job. Note that the
QUERY_STRING in %%BINARY%% mode is not converted by the server.

Length of receiver variable
INPUT:BINARY(4)

The input variable containing the length of the space provided to receive the
environment variable’s value.

Length of response
OUTPUT:BINARY(4)

The output variable that contains the length of the environment variable’s
value. When the API is unable to determine the value for the requested
environment variable, the length of the environment variable value is set to
zero. When the size required for the environment variable value is larger than
the length of the receiver variable, the size required to receive the value is
returned.

Request variable
INPUT:CHAR(*)

The input variable containing the desired environment variable’s name.

Length of request variable
INPUT:BINARY(4)

The input variable containing the length of the desired environment variable’s
name.

Error Code
I/O:CHAR(*)

Chapter 2. Application Programming Interfaces 25

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the programming
topic in the AS/400 Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E
Error occurred with input data parameter.

CPF3C19 E
Error occurred with receiver variable specified.

CPF3CF1 E
Error code parameter not valid.

Note: The Environment Variable APIs provide the getenv() (Get Value of
Environment Variable) function necessary to retrieve environment variables
in ILE/C. Therefore, programs written in ILE/C do not need to use the
QtmhGetEnv() API. This API, for ILE/C, is more difficult to use (and is
slower) than the getenv() API on which it is based.

Put Environment Variable (QtmhPutEnv) API

Parameters
Required Parameter Group:

1 Environment string Input Char(*)
2 Length of environment string Input Binary(4)
3 Error Code I/O Char(*)

The QtmhPutEnv API allows you to set or create a job-level environment variable.
This is useful for communication between programs running in the same job, such
as your program and the Net.Data® language environment DTW_SYSTEM.

Required parameter group
Environment string

INPUT:CHAR(*)

The input string of the form: ″envVar=value″. Where ″envVar″ is the name of
the new or existing environment variable, and ″value″ is the value you wish to
set the environment variable. Note that they are both case sensitive. The server
expects this value to be in the CCSID of the job.

Length of environment string
INPUT:BINARY(4)

The input variable that contains the length of the environment string
parameter. For example, the length of the environment string ″envVar=value″
is twelve.

Error Code
I/O:CHAR(*)

26 Web Programming Guide V4R5

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the programming
topic in the AS/400 Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.

CPF3021 E
The value specified for the argument is not correct.

CPF3C17 E
Error occurred with input data parameter.

CPF3CF1 E
Error code parameter not valid.

CPF3408 E
The address used for an argument is not correct.

CPF3460 E
Storage allocation request failed.

CPF3474 E
Unknown system state.

CPF3484 E
A damaged object was encountered.

Note: The Environment Variable APIs provide the putenv() (Put Value in
Environment Variable) function necessary to set (or create and set) an
environment variable. Therefore, programs written in ILE/C do not need to
use the QtmhPutEnv() API. This API, for ILE/C, is more difficult to use (and
is slower) than the putenv() API on which it is based.

Read from Stdin (QtmhRdStin) API

Parameters
Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Length of response available Output Binary(4)
4 Error Code I/O Char(*)

The QtmhRdStin API allows CGI programs that are written in languages other than
C to read from stdin. CGI programs read from stdin when the request from the
browser indicates the method that is POST. This API reads what the server has
generated as input for the CGI program.

Important!
CGI input data is only available from standard input when the client request
is submitted with method POST. There are no standard input data when the
method is GET or HEAD. In addition, the Content_Length environment
variable is set only when the Request_Method is POST.

Chapter 2. Application Programming Interfaces 27

The program reads all of the data in a single request. This is because the API treats
each request as a request for data starting at its beginning. The API handles each
request as if it was the only request.

The length of the data returned by QtmhRdStin includes all the data from stdin.
This includes line-formatting characters that are normally a part of the POST data
as defined by the CGI specification.

Note that the format of this data is different depending on the CGI input mode
being used. For %%MIXED%% mode, the data will have American National
Standard Code for Information Interchange (ASCII) hexadecimal encoded
characters. For %%EBCDIC%% mode, all data including hexadecimal will be in the
CCSID of the job. The server performs no conversion for %%BINARY%% mode.

Required parameter group
Receiver variable

OUTPUT:CHAR(*)

The output variable that contains the data read from stdin. In CGI input mode
%%MIXED%%, this data is in the CCSID of the job except that the encoded
characters “%xx” are still represented by the ASCII 819 octet. In
%%EBCDIC%% mode, this data is in the CCSID of the job, including the
escape sequences. In %%BINARY%% mode, the data is in the code page sent
by the browser.

Length of receiver variable
INPUT:BINARY(4)

The input variable containing the number of bytes that are to be read from
stdin.

Length or response available
OUTPUT:BINARY(4)

The output variable containing the length of the data read from stdin. If there
is no data available from stdin, this variable will be set to zero.

Error Code
I/O:Char(*)

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the programming
topic in the AS/400 Information Center.

Error Messages
CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E
Error occurred with input data parameter.

CPF3C19 E
Error occurred with receiver variable specified.

CPF3CF1 E
Error code parameter not valid.

28 Web Programming Guide V4R5

Write to Stdout (QtmhWrStout) API

Parameters
Required Parameter Group:

1 Data variable Input Char(*)
2 Length of data variable Input Binary(4)
3 Error Code I/O Char(*)

The QtmhWrStout API provides the ability for CGI programs that are written in
languages other than C to write to stdout.

Required parameter group
Data variable

Input:CHAR(*)

The input variable containing the data to write to stdout.

Length of data variable
INPUT:BINARY(4)

The input variable contains the length of the data written to stdout. The length
of the data must be larger than 0.

Error Code
I/O:CHAR(*)

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the programming
topic in the AS/400 Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E
Error occurred with input data parameter.

CPF3CF1 E
Error code parameter not valid.

Note: CGI programs written in the C language do not require a special API to
write data to stdout. The following example shows how a CGI program
might write to stdout:
fwrite(buffer,1,sizeof(buffer),stdout);

CGI programs are expected to produce data in the stdout that is formatted
according to the CGI interface specification. The QtmhWrStout API provides
no line formatting; the user of the API must perform prescribed formatting
which includes the requirement for text line characters (such as new line).
Errors are not indicated for data that is not formatted per CGI requirements.

Chapter 2. Application Programming Interfaces 29

Convert to DB (QtmhCvtDB) API

Parameters
Required Parameter Group:

1 Qualified database file name Input Char(20)
2 Input string Input Char(*)
3 Length of input string Input Binary(4)
4 Response variable Output Char(*)
5 Length of response variable Input Binary(4)
6 Length of response available Output Binary(4)
7 Response code Output Binary(4)
8 Error Code I/O Char(*)

The QtmhCvtDB API provides an interface for CGI programs to parse CGI input,
defined as a series of keywords and their values, into a buffer which is formatted
according to a DDS file specification. CGI input data, which comes to the CGI
program as character data, will be converted by the QtmhCvtDB API to the data
type defined for the keyword by the corresponding field name in the input DDS
file. AS/400 language statements, such as the ILE C #pragma mapinc statement,
provide the ability to map the returned structure with field names defined in the
DDS file. See the appropriate language user’s guide for details.

Note that the QtmhCvtDB API is not allowed in CGI mode %%BINARY%%.

The following DDS field types are handled:

A Alphanumeric (see note 1)

P Packed Decimal (see note 2)

S Zoned Decimal

F Floating Point

T Time

L Date

Z Timestamp

B Binary (see note 3)

O DBCS

These DDS field types are not handled:

H Hexadecimal (see note 4)

G Graphic (see note 5)

J DBCS (see note 5)

E DBCS (see note 5)

Notes:

1. The VARLEN keyword is not supported.
2. When using a packed decimal field, the #pragma mapinc() must use _P the

option, to create a packed structure.

30 Web Programming Guide V4R5

3. Input to Binary fields is converted to integer. The DDS file specification must
declare zero decimal positions (for example, “xB 0”, where x is 1-9).

4. ILE C converts hex DDS field data to character fields. Since the input stream to
QtmhCvtDB() is a text string, the “hex” data would be converted from text to
character fields. Therefore, using the A (Alphanumeric) field type to obtain the
same conversion.

Required parameter group
Qualified database file name

Input:CHAR(20)

The input variable containing the name of the database file defining field
names and data types for the keywords anticipated in the input to the CGI
program. Typically, the database file is generated using DDS to define the
fields corresponding to the keywords anticipated in the CGI inputs. The first
10 characters contain the database file name, and the second 10 characters
contain the library name.

Input string
INPUT:CHAR(*)

The input variable containing the string of CGI input parameters to be parsed.
When the environment variable REQUEST_METHOD indicates that the
method is GET, characters up to the first ? are ignored. The string must meet
the format requirements for CGI input keyword strings.

Length of input string
INPUT:BINARY(4)

The input variable containing the length of the character string that contains
the CGI input parameters to be parsed. The length of the string must be
greater than 0.

Response variable
OUTPUT:CHAR(*)

The output variable which is to contain the structure mapped according to the
database file describing the input parameters anticipated by the CGI program.

Length of response available
INPUT:BINARY(4)

The input variable containing the total length of the buffer into which the CGI
input parameters will be parsed.

Length of response
OUTPUT:BINARY(4)

The output variable that contains the length of the response. If the response
variable is too small to contain the entire response, this parameter will be set to
the size that is required to contain the entire response.

Response code
OUTPUT:BINARY(4)

A code that indicates the status of the request.

0 All keywords have been translated according the database file.

Chapter 2. Application Programming Interfaces 31

-1 The database file contains definitions for structure fields for which the
CGI input has no corresponding keyword.

-2 The CGI input contains one or more keywords for which the database
file contains no corresponding field.

-3 A combination of the condition for response codes -1 and -2 has been
detected.

-4 An error occurred while converting the CGI input string to the DDS
defined data types. The data may or may not be usable.

-5 This API is not valid when a program is not called by the IBM HTTP
Server. No data parsing is done.

-6 This API is not valid when operating in %%BINARY%% mode. No
data parsing is done.

Error Code
I/O CHAR(*)

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the programming
topic in the AS/400 Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E
Error occurred with input data parameter.

CPF3C19 E
Error occurred with receiver variable specified.

CPF3CF1 E
Error code parameter not valid.

CPF9810 E
Library &1 not found.

CPF9812 E
File &1 in library &2 not found.

CPF9822 E
Not authorized to file &1 in library &2

Parse QUERY_STRING Environment Variable or Post stdin
data (QzhbCgiParse) API

You can use the QzhbCgiParse API to parse the QUERY_STRING environment
variable, in the case of the GET method, or standard input, in the case of POST
method, for CGI scripts. If the QUERY_STRING environment variable is not set,
the QzhbCgiParse API reads the CONTENT_LENGTH characters from its input.
All return output is written to its standard output.

You can only call QzhbCgiParse once for the POST method. To use this API with
the POST method, you would first want to read all of stdin and assign it to the
QUERY_STRING environment variable. You would then change the environment
variable REQUEST_METHOD to GET.

32 Web Programming Guide V4R5

Parameters
Required Parameter Group:

1 Command string Input Char(*)
2 Output format Input Char(8)
3 Target Buffer Output Char(*)
4 Length of Target Buffer Input Binary(4)
5 Length of response Output Binary(4)
6 Error Code I/O CHAR(*)

Required parameter group
Command string

Input:CHAR(20)

The command string is a null ended string for flags and modifiers. At least one
space must separate each flag. There is a one-character equivalent for each flag.
The following flags are supported:

-a[gain] continuation-handle
The continuation-handle is the value returned to the caller in the target buffer
when only partial information is returned. This flag is not valid on the first call
to this API. It is used to retrieve the next set of information that would have
been returned on a previous call if there had been enough space in the target
buffer. All other flags must be the same as the previous call. Incomplete or
inaccurate information may result if all other flags are not the same.

Note: This flag can only be used for the CGII0200 format.

-k[eywords]
Parses QUERY-STRING for keywords. Keywords are decoded and written to
the target buffer, one per line.

-f[orm]
Parses QUERY_STRING as form request. The field names will be set as
environment variables with the prefix FORM_. Field values are the contents of
the variables.

-v[alue] field-name
Parses QUERY_STRING as form request. Returns only the value of field-name
in the target buffer.

-r[ead]
Reads CONTENT_LENGTH characters from standard input and writes them to
the target buffer.

-i[nit]
If QUERY_STRING is not set, reads the value of standard input and returns a
string that can be used to set QUERY_STRING.

-s[ep] separator
Specifies the string that is used to separate multiple values. If you are using
the -value flag, the default separation is newline. If you are using the -form
flag, the default separator is a comma (,).

Chapter 2. Application Programming Interfaces 33

-p[refix] prefix
Used with -POST and -form to specify the prefix to use when creating
environment variable names. The default is ″FORM_″.

-c[ount]
Used with -keywords, -form, and -value, returns a count of items in the target
buffer that is related to these flags:

-keywords
Returns the number of keywords.

-form
Returns the number of unique fields (multiple values are counted as one)

-value field-name
Returns the number of values for field-name. If there is no field that is
named field-name, the output is 0.

-number
Used with -keywords, -form, and -value. Returns the specified occurrence in
the target buffer related to the following flags:

-keywords
Returns the n’th keyword. For example, -2 -keywords writes the second
keyword.

-form
Returns all the values of the n’th field.

-value field-name
Returns the n’th of the multiple values of field field-name.

-POST
Information from standard input is directly decoded and parsed into values
that can be used to set environment variables. This flag is the equivalent to
consecutive use of the -init and -form options.

-F[sccsid] FileCCSID
The FileCCSID is the name of the file system CCSID used in CCSID conversion
when processing the CGI input data. The CGI program wants the data to be
returned in this CCSID. It only applies when the server is using
%%BINARY%% CGI conversion mode. When an unknown CCSID is set, the
current value of the CGI_EBCDIC_CCSID environment variable is used.

-N[etccsid] NetCCSID
The NetCCSID is the network CCSID used in CCSID conversion when
processing the CGI input data. This is the CCSID that the data is presumed to
be in at this time (as assumed or as set in a charset tag). It only applies when
the server is using %%BINARY%% CGI Input mode. When an unknown
CCSID is set, the current value of the CGI_ASCII_CCSID environment variable
is used.

Output format
INPUT:CHAR(*)

The format of the data to be returned in the target buffer. You must use one of
the following format names:
v CGII0100 This format is the free-form format returned to standard output on

other platforms.
v CGII0200 CGI form variable format. This format only applies to the -form

and -POST option.

34 Web Programming Guide V4R5

Target Buffer
OUTPUT:CHAR(*)

This is output buffer that contains the information requested by the command
string (if any).

Length of Target Buffer
INPUT:BINARY(4)

The length of the target buffer provided to receive the API output.

Length of Response
OUTPUT:BINARY(4)

The actual length of the information returned in the target buffer.

Error Code
I/O:CHAR(*)

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the programming
topic in the AS/400 Information Center.

CGII0200 Format

Offset
Decimal

Offset
Hexadecimal

Type Field

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(20) Continuation handle

28 1C BINARY(4) Offset to first variable entry

32 20 BINARY(4) Number of variable entries returned

36 24 CHAR(*) Reserved

BINARY(4) Length of variable entry (See note)

BINARY(4) Length of variable name (See note)

CHAR(*) Variable name (See note)

BINARY(4) Length of variable value (See note)

CHAR(*) Variable value (See note)

CHAR(*) Reserved (See note)

Note: These fields contain variable entry information and are repeated for each variable
entry returned.

Field descriptions
Bytes returned The number of bytes of data returned.

Bytes available The number of bytes of data available to be returned. All available
data is returned if enough space is available.

Continuation handle The handle that is returned when more data is available to
return, but the target buffer is not large enough. The handle indicates the point in
the repository that the retrieval stopped. If the handle is used on the next call to
the API (using the -again flag), the API returns more data starting at the point that
the handle indicates. This field is set to blanks when all information is returned.

Chapter 2. Application Programming Interfaces 35

Offset to first variable entry The offset to the first variable entry returned. The
offset is from the beginning of the structure. If no entries are returned, the offset is
set to zero.

Number of variable entries returned The number of variable entries returned. If
the target buffer is not large enough to hold the information, this number contains
only the number of variables actually returned.

Reserved This field is ignored.

Length of variable entry The length of this variable entry. This value is used in
determining the offset to the next variable entry. Note that this value is always set
to a multiple of four.

Length of variable name The length of the variable name for this entry.

Variable name A field name as found in the form data. If the server is using
%%EBCDIC%% or %%MIXED%% CGI mode, this value is in the CCSID of the job.
If the server is using %%BINARY%% CGI mode, this value is in the codepage as
sent from the browser unless -fsccsid is specified on the API invocation. If -fsccsid
is specified, the value is in that CCSID.

Length of variable value The length of the variable value for this entry.

Variable value A field name as found in the form data. If the server is using
%%EBCDIC%% or %%MIXED%% CGI mode, this value is in the CCSID of the job.
If the server is using %%BINARY%% CGI mode, this value is in the codepage as
sent from the browser unless -fsccsid is specified on the API invocation. If -fsccsid
is specified, the value is in that CCSID.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E
Error occurred with input data parameter.

CPF3C19 E
Error occurred with receiver variable specified.

CPF3CF1 E
Error code parameter not valid.

Note: For further information on errors, the joblog for the CGI job may contain
CPF9898 messages (with all English text) describing the error in more detail.

Produce Full HTTP Response (QzhbCgiUtils) API
Use the QzhbCgiUtils API to produce a full HTTP 1.0/1.1 response for non-parsed
header CGI programs. This API provides functionality similar to the cgiutils
command used by other IBM HTTP Server platforms.

Parameters
Required Parameter Group:

1 Command string Input Char(*)
2 Error code I/O Char(*)

36 Web Programming Guide V4R5

Command string
INPUT:CHAR(*)

The command string is a null ended string of flags and modifiers. Each flag
must be separated by at least one space. The following flags are supported:

-nodate
Does not return the Date: header to the browser.

-noel
Does not return a blank line after headers. This is useful if you want other
MIME headers after the initial header lines.

-status nnn
Returns full HTTP response with status code nnn, instead of only a set of
HTTP headers. Do not use this flag if you only want the Expires: header.

-reason explanation
Specifies the reason line for the HTTP response. You can only use this flag with
the -status flag. If the explanation text contains more than one word, you must
enclose it in parentheses.

-ct [type/subtype]
Specifies MIME Content-Type header to return to the browser. If you omit the
type/subtype, the MIME content type is set to the default text/plan.

-charset character-set
Used with the -ct flag to specify the charset tag associated with the text
Content-Types.

-ce encoding
Specifies MIME Content-Encoding header to return to the browser.

-cl language-code
Specifies MIME Content-Language header to return to the browser.

-length nnn
Specifies MIME Content-Length header to return to the browser.

-expires Time-Spec
Specifies MIME Expires header to return to the browser. This flag specifies the
time to live in any combination of years, months, days, hours, minutes, and
seconds. The time must be enclosed in parentheses. For example:
-expires (2 days 12 hours)

-expires now
Produces an Expires: header that matches the Date: header to return to the
browser.

-uri URI
Specifies the Universal Resource Identifier (URI) for the returned document.
URI can be considered the same as URL.

-extra xxx: yyy
Specifies an extra header that cannot otherwise be specified.

Error Code
I/O:CHAR(*)

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the programming
topic in the AS/400 Information Center.

Chapter 2. Application Programming Interfaces 37

Error messages
CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E
Error occurred with input data parameter.

CPF3CF1 E
Error code parameter not valid.

Configuration APIs
The configuration APIs are in *SRVPGM QZHBCONF in library QHTTPSVR. ILE C
programs must include header file QHTTPSVR/H(QZHBCONF).

While each individual API lists its own authorities, the following authorities are
needed to run all configuration APIs:
v *OBJOPR, *READ, *ADD, and *EXECUTE to the QUSRSYS library
v *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either

*OBJMGT or *OBJALTER to the QUSERSYS/QATMHTTPC file
v *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either

*OBJMGT or *OBJALTER to the QUSERSYS/QATMHTTPA file

Note: The QUSERSYS/QATMHTTPA file is the administration (ADMIN) server
configuration file.

Convert URL to Path (QzhbCvtURLtoPath) API

Required Parameter Group:
1 Name of Configuration Input Char(10)
2 The URL Input Char(*)
3 Length of the URL Input Binary(4)
4 Path to physical resource Output Char(*)
5 Length of path available Input Binary(4)
6 Actual length of path Output Binary(4)
7 PATH_TRANSLATED Output Char(*)
8 Length of PATH_TRANSLATED

available
Input Binary(4)

9 Actual length of
PATH_TRANSLATED

Output Binary(4)

10 QUERY_STRING Output Char(*)
11 Length of QUERY_STRING

available
Input Binary(4)

12 Actual length of
QUERY_STRING

Output Binary(4)

13 Error Code I/O Char(*)
Threadsafe: Yes

Use the QzhbCvtURLtoPath to convert a URL into the physical resource the
webserver serves as a result of a request of this URL. All character input and
output data will be in the CCSID of the job.

Authorities and locks
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR and **READ authority to the QUSRSYS/QATMHTTPC file

38 Web Programming Guide V4R5

Required parameter group
Name of Configuration

INPUT; CHAR(10)

The name of the configuration from where to retrieve the information.

The URL
INPUT; CHAR(*)

The URL to convert into a physical resource.

Length of the URL
INPUT; BINARY(4)

The length of the URL.

Path to physical resource
OUTPUT; CHAR(*)

The fully qualified path to the physical resource the web server would
serve as a result of a request of this URL.

Length of the path available
INPUT; BINARY(4)

The length of the space provided to receive the path to a physical resource.

Actual length of path
OUTPUT; BINARY(4)

The actual path to the physical resource. When the API is unable to
determine a physical resource to convert to, this server sets this value to
zero. When the size required for the path is larger than the length of the
space provided, the actual space required for the path is returned.

PATH_TRANSLATED
OUTPUT; CHAR(*)

The value of PATH_TRANSLATED.

Length of PATH_TRANSLATED available
INPUT; BINARY(4)

The length of the space provided to receive PATH_TRANSLATED.

Actual length of PATH_TRANSLATED
INPUT; BINARY(4)

The actual length of the PATH_TRANSLATED. When API is unable to
determine PATH_TRANSLATED, this value will be set to zero. When the
size required for PATH_TRANSLATED is larger than the length of the
space provided, the actual space required is returned.

QUERY_STRING
OUTPUT; CHAR(*)

The value of QUERY_STRING.

Length of QUERY_STRING available
INPUT; BINARY(4)

The length of the space provided to receive QUERY_STRING.

Actual length of QUERY_STRING
OUTPUT; BINARY(4)

Chapter 2. Application Programming Interfaces 39

The actual length of the QUERY_STRING. When the API is unable to
determine QUERY_STRING, this value will be set to zero. When the size
required for QUERY_STRING is larger than the length of the space
provided, the actual space required is returned.

Error Code
I/O; CHAR(*)

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the
programming topic in the AS/400 Information Center.

Error messages
CPF3C17 E

Error occurred with input data parameter.

CPF3CF1 E
Error code parameter not valid.

HTPA104 E
Server configuration not found or is unreadable.

Retrieve Directive (QzhbRetrieveDirective) API

Required Parameter Group:
1 Name of Configuration Input Char(10)
2 Name of the directive Input Char(*)
3 Length of the directive name Input Binary (4)
4 Number of values returned Output Binary (4)
5 Format name Input Char(8)
6 Buffer containing length/value

pairs
Output Char(*)

7 Length of space available Input Binary (4)
8 Actual length of total values

returned
Output Binary (4)

9 Error code I/O Char(*)
Threadsafe: Yes

Use the QzhbRetrieveDirective to retrieve the current value of a configuration
directive. Some directives can have more than one value. If it does, a list of values
is returned in the order found in the configuration file. All character input and
output data will be in the CCSID of the job.

Note: The use of this API is discouraged. Support for other more comprehensive
configuration APIs (that are descibed in this section) have been provided.
This API is being provided for compatibility.

Authorities and locks
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR and **READ authority to the QUSRSYS/QATMHTTPC file

Required parameter group
Name of configuration

INPUT; CHAR(10)

The name of the configuration from which to retrieve the information.

40 Web Programming Guide V4R5

Name of the directive
INPUT; CHAR(*)

The name of the directive to retrieve.

Length of the directive name
INPUT; BINARY(4)

The length of the directive name.

Number of values returned
OUTPUT; BINARY(4)

The number of values returned in the output buffer. This value will be zero if
the server finds no matching directives or if there was not enough space
available for all the values.

Format name
INPUT; CHAR(8)

The format of the data returned.The possible format names follow:
RTVD0100 Retrieve length/value pairs.

Buffer containing values
OUTPUT; CHAR(*)

The buffer containing the output.

Length of space available
INPUT; BINARY(4)

The length of the space provided to receive the directive values.

Actual length of total values returned
OUTPUT; BINARY(4)

The actual length of the total values returned. When the API is unable to find a
matching directive, this value will be set to zero. When the size required for
the total value is larger than the length of the space provided, the actual space
required for the total number of values is returned.

Error Code
I/O;CHAR(*)

The structure in which to return error information. For the format of the
structure and for details on how to process API errors, see the programming
topic in the AS/400 Information Center.

Format of Output Data
The buffer will contain data in one of the following formats:

RTVD0100 Format: The server uses the RTVD0100 format to retrieve a list of
length and value pairs for the directive specified.

Offset Type Field

Dec Hex

0 0 BINARY(4) Displacement to next
entry

4 4 CHAR(*) Value

Chapter 2. Application Programming Interfaces 41

Error messages
CPF3C17 E

Error occurred with input data parameter

CPF3CF1 E
Error code parameter not valid.

HTPA104 E
Server configuration not found or is unreadable.

Retreive a list of all Configuration Names
(QzhbGetConfigNames) API

Required Parameter Group:
1 buf Output Char(*)
2 buf_size Input Binary(4)
3 buf_actlen Output Binary(4)
4 count Output Binary(4)
5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetConfigNames API to retrieve a list of all server configuration names
defined on your AS/400.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR and *READ authority to the QUSRSYS/QATMHTTPC file

Required parameter group
buf

OUTPUT:CHAR(*)

The buffer where the configuration names are placed.

buf_size
INPUT:BINARY(4)

The size of the buffer in bytes.

buf_actlen
OUTPUT:BINARY(4)

The length of all configuration names. Any data beyond the size specified in
buf_size parameter is truncated.

count
OUTPUT:BINARY(4)

The total number of server configuration names, whether or not they fit in the
buffer.

errcode
I/O:CHAR(*)

42 Web Programming Guide V4R5

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

CPF9802 E
Not authorized to object &2 &3.

Create a Configuration (QzhbCreateConfig) API

Required Parameter Group:
1 name Input Char(10)
2 basedname Input Char(10)
3 basedfile Input Char(8)
4 basedf_len Input Binary(4)
5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbCreateConfig API to create a new configuration. You can create a new
configuration based on an existing configuration by passing in an existing
configuration name. You can also create an empty configuration file or a
configuration file that is based on a text file.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *EXECUTE and *ADD authority to the QUSRSYS library
v *OBJOPR ,*ADD, *DLT, and either *OBJMGT or *OBJALTER authority to the

QUSRSYS/QATMHTTPC file

Required parameter group
name

INPUT:CHAR(10)

The configuration file name. The name can be up to 10 characters long
(padded with blanks).

basedname
INPUT:CHAR(10)

The name of an existing configuration file used to create a new configuration
file. The name can be up to 10 characters long (padded with blanks). To create
an empty configuration, pass a NULL (omit) for this parameter or pass all
blanks.

basedfile
INPUT:CHAR(8)

The path to the text file used to create the new configuration. This parameter is
omissable.

basedf_len
INPUT:BINARY(4)

Chapter 2. Application Programming Interfaces 43

The length of the basedfile file. A length of 0 means that no basedfile file is
passed. If this parameter is greater than 0, basedname cannot also be passed.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPFB602 E
Cannot open file.

HTPA001 E
Input parameter &1 not valid.

HTPA104 E
Server configuration &1 not found or is unreadable.

HTPA105 E
Unable to update server configuration &1.

CPF9802 E
Not authorized to object &2 &3.

Delete a Configuration (QzhbDeleteConfig) API

Required Parameter Group:
1 name Input Char(10)
2 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbDeleteConfig API to delete a configuration file.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR, *OBJEXIST, *DLT, and either *OBJMGT or *OBJALTER authority to the

QUSRSYS/QATMHTTPC file

Required parameter group
name

INPUT:CHAR(10)

The configuration file name you want to delete. The name can be up to 10
characters long (padded with blanks).

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

44 Web Programming Guide V4R5

HTPA001 E
Input parameter &1 not valid.

HTPA104 E
Server configuration &1 not found or is unreadable.

HTPA105 E
Unable to update server configuration &1.

CPF9802 E
Not authorized to object &2 &3.

Read a Configuration File into Memory (QzhbOpenConfig) API

Required Parameter Group:
1 name Input Char(10)
2 writelock Input Binary(4)
3 cfg Output Binary(4)
4 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbOpenConfig API to read a configuration file into memory. A handle to
the memory copy of the file is returned, and is used in subsequent API calls to
manipulate directives within the file. When the copy of the file is no longer
required, the QzhbCloseConfig API is used to free it and optionally write the
altered contents out.

Authorities and locks
To invoke this API with a writelock value of 0, the user must have the following
authorities:
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR and *READ authority to the QUSRSYS/QATMHTTPC file

To invoke this API with a writelock value of 1, the user must have the following
authorities:
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR, *OBJMGR, *ADD, and *DLT authority to the QUSRSYS/QATMHTTPC

file

Required parameter group
name

INPUT:CHAR(10)

The name of the configuration file you want to read into memory. The name
can be up to 10 characters long (padded with blanks).

writelock
INPUT:BINARY(4)

The value 0 (false) or 1 (true). If the value is 1, an exclusive read object lock is
obtained on this member of the QUSRSYS/QATMHTTPC file. No other user
can update the configuration while the lock is in place. The lock is released
when the QzhbCloseConfig API is called. If the value is 0, no lock is placed on
the member.

Chapter 2. Application Programming Interfaces 45

Note: You must specify a writelock of 1, and successfully obtain the object
lock, in order to later specify a write argument of 1 on the
QzhbCloseConfig API. If you do not have this lock, the
QzhbCloseConfig API will not write the contents of the configuration
file.

cfg
OUTPUT:BINARY(4)

The handle returned to the loaded configuration file.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA104 E
Server configuration &1 not found or is unreadable.

HTPA105 E
Unable to update server configuration &1.

CPF9802 E
Not authorized to object &2 &3.

Free a Configuration File from Memory (QzhbCloseConfig) API

Required Parameter Group:
1 cfg Input Binary(4)
2 write Input Binary(4)
3 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbCloseConfig API to free a configuration file in memory. Optionally, the
data in memory can first be written to the configuration file where it was read
from by the QzhbOpenConfig API.

Authorities and locks
None.

Required parameter group
cfg

INPUT:BINARY(4)

The configuration file handle, returned by a call to API QzhbOpenConfig.

write
INPUT:BINARY(4)

46 Web Programming Guide V4R5

When 1 is specified in the write parameter, the directives are written to the
configuration file before being freed from memory. If a write fails, the memory
is not freed, the handle is still valid, and error information is returned.

When 0 is specified, the dirrectives are not written, but the object lock is
released if it was obtained at QzhbOpenConfig time.

Note: In order to specify a write of 1, you must have previously specified a
writelock of 1 on the QzhbOpenConfig API.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA105 E
Unable to update server configuration &1.

HTPA106 E
Input configuration handle not valid.

Search for a Main Directive (QzhbFindDirective) API

Required Parameter Group:
1 cfg Input Binary(4)
2 value Input Char(*)
3 value_len Input Binary(4)
4 startdir Input Binary(4)
5 num Input Binary(4)
6 case_sens Input Binary(4)
7 dir Output Binary(4)
8 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbFindDirective API to find a main directive in a configuration file
previously opened by a call to the QzhbOpenConfig API. If a directive is found, a
handle to the directive is returned and can be used on subsequent calls to other
APIs.

Authorities and locks
None.

Required parameter group
cfg

INPUT:BINARY(4)

The handle returned by a call to the QzhbOpenConfig API.

value
INPUT:BINARY(4)

Chapter 2. Application Programming Interfaces 47

The character string for matching to a directive. Only as many tokens (words
delimited by a space) as are provided are matched. Any extra tokens either on
the value string or the directive being considered for a match will not be
compared. For example a value string of Port 1234 junk will match a directive
of Port 1234. To match any directive, including comment lines, pass either a
NULL pointer or a string with no tokens on it such as a 0 length string.

value_len
INPUT:BINARY(4)

The length of the value string.

startdir
INPUT:BINARY(4)

The directive handle that specifies where to begin searching for a match. The
directive immediately following this one is the first one searched. If the startdir
parameter is passed as a NULL, then searching begins at the beginning of the
configuration file. If the startdir parameter is not passed as a NULL (omitted),
then the startdir parameter must be the handle to a main directive, and cannot
be a subdirective.

num
INPUT:BINARY(4)

The number of the match to be returned. The num parameter must be a
number greater than or equal to 0. If the value is 0, then the last matching
directive is returned. If the value is 1, the first match is returned. If the value is
2, the second match is returned, and so on.

case_sens
INPUT:BINARY(4)

The value of 0 (false) or a value of 1 (true), indicating whether matching of
tokens in the search string should be case sensitive. In most cases, except
where certain case-sensitive file paths are being considered, this parameter
should be 0 (false). Note that the searches for the actual directive name, which
is the first token on the line, is never case-sensitive.

dir
OUTPUT:BINARY(4)

The handle to the matched directive. If no directive is found, error HTPA110 is
returned.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA106 E
Input configuration handle not valid.

48 Web Programming Guide V4R5

HTPA107 E
Input directive handle in parameter &1 not valid.

HTPA108 E
Input directive handle in parameter &1 not a main directive.

HTPA110 E
No matching directive found.

Search for a Subdirective under Main Directive
(QzhbFindSubdirective) API

Required Parameter Group:
1 cfg Input Binary(4)
2 maindir Input Binary(4)
3 value Input Char(*)
4 value_len Input Binary(4)
5 startdir Input Binary(4)
6 num Input Binary(4)
7 case_sens Input Binary(4)
8 dir Output Binary(4)
9 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbFindSubdirective API to find a subdirective in a configuration file
previously opened by a call to the QzhbOpenConfig API. If a subdirective is
found, a handle to the subdirective is returned and can be used on subsequent
calls to other APIs.

Authorities and locks
None.

Required parameter group
cfg

INPUT:BINARY(4)

The handle returned by a call to the QzhbOpenConfig API.

maindir
INPUT:BINARY(4)

The handle to a main directive previously returned by a call to the
QzhbFindDirective API. If the startdir parameter is not NULL, then the
maindir parameter can be passed as NULL since the main directive is implied
by startdir. If both the maindir and startdir parameters are passed, then the
startdir parameter must specify the handle to a subdirective under maindir.

value
INPUT:CHAR(*)

The character string for matching to a subdirective. Only as many tokens
(words delimited by a blank) as are provided are matched. Any extra tokens
either on the value string or the subdirective being considered for a match will
not be compared. For example a value string of Port 1234 junk will match a
directive of Port 1234. To match any subdirective, including comment lines,
pass either a NULL pointer or a string with no tokens on it such as a 0 length
string.

Chapter 2. Application Programming Interfaces 49

value_len
INPUT:BINARY(4)

The length of the value string.

startdir
INPUT:BINARY(4)

The subdirective handle that specifies where to begin searching for a match.
The subdirective immediately following this one is the first one searched. If the
startdir parameter is passed as a NULL (omitted), then searching begins at the
beginning of the subdirective list for maindir. If the startdir parameter is not
NULL, then the maindir parameter can be passed as NULL since the main
directive is implied by startdir. If both the maindir and startdir parameters are
passed, then startdir must be the handle to a subdirective under maindir.

num
INPUT:BINARY(4)

The number of the match to be returned. The num parameter must be a
number greater than or equal to 0. If the value is 0, then the last matching
subdirective is returned. If the value is 1, the first match is returned. If the
value is 2, the second match is returned, and so on.

case_sens
INPUT:BINARY(4)

The value of 0 (false) or a value of 1 (true), indicating whether matching of
tokens in the search string should be case sensitive. In most cases, except
where certain case-sensitive file paths are being considered, this parameter
should be 0 (false). Note that the searches for the actual subdirective name,
which is the first token on the line, is never case-sensitive.

dir
OUTPUT:BINARY(4)

The handle to the matched subdirective, if found.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA106 E
Input configuration handle not valid.

HTPA107 E
Input directive handle in parameter &1 not valid.

HTPA108 E
Input directive handle in parameter &1 not a main directive.

HTPA109 E
Input directive handle in parameter &1 not a subdirective.

50 Web Programming Guide V4R5

HTPA110 E
No matching directive found.

Return Details of a Main Directive or Subdirective
(QzhbGetDirectiveDetail) API

Required Parameter Group:
1 cfg Input Binary(4)
2 dir Input Binary(4)
3 buf Output Char(*)
4 buf_size Input Binary(4)
5 buf_actlen Output Binary(4)
6 hassubdirs Output Binary(4)
7 issubdir Output Binary(4)
8 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetDirectiveDetail API to extract detail information about a main
directive or subdirective.

Authorities and locks
None.

Required parameter group
cfg

INPUT:BINARY(4)

The handle returned to the configuration file by a call to API
QzhbOpenConfig.

dir
INPUT:BINARY(4)

The handle to a main directive or subdirective, as returned by the
QzhbFindDirective or QzhbFindSubdirective APIs.

buf
OUTPUT:CHAR(*)

The buffer where the directive string is placed.

buf_size
INPUT:BINARY(4)

The size of the buffer in bytes.

buf_actlen
OUTPUT:BINARY(4)

The actual length of the directive string. Any data beyond the size specified in
the buf_size parameter is truncated.

hassubdirs
OUTPUT:BINARY(4)

The value is set to 1 (true) when dir is a main directive and there are
subdirectives under it. If dir is not a main directive, the value is set to 0 (false).

Chapter 2. Application Programming Interfaces 51

issubdir
OUTPUT:BINARY(4)

The value is set to 1 (true) when dir is a subdirective. The value is set to 0
(false) when dir is a main directive.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA106 E
Input configuration handle not valid.

HTPA107 E
Input directive handle in parameter &1 not valid.

Add a Main Directive or Subdirective (QzhbAddDirective) API

Required Parameter Group:
1 cfg Input Binary(4)
2 value Input Char(*)
3 value_len Input Binary(4)
4 position Input Binary(4)
5 reldir Input Binary(4)
6 newdir Output Binary(4)
7 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbAddDirective API to add a new main directive or subdirective to a
configuration file located in memory.

Authorities and locks
None.

Required parameter group
cfg

INPUT:BINARY(4)

The handle returned by a call to API QzhbOpenConfig.

value
INPUT:CHAR(*)

The character string of the new directive. This string is not validated in any
way to ensure that it is a valid directive.

52 Web Programming Guide V4R5

value_len
INPUT:BINARY(4)

The length of the value string. The length must be greater than or equal to 1.

position
INPUT:BINARY(4)

The number indicating the insertion position for the new directive. See Table 3
for more information.

reldir
INPUT:BINARY(4)

The handle to a main directive or subdirective, or a NULL (omitted). See
Table 3 for more information.

newdir
OUTPUT:BINARY(4)

The handle of the newly added main directive or subdirective.

errcode
I/O:CHAR(*)

The structure in which to return error information.

The position and reldir parameters must be considered together. The combination
of these parameters determine whether the directive being added is a main
directive or subdirective and where in the configuration file it is to be added.
Table 3 shows the behavior for the various combinations of these parameters.

Table 3. Using the reldir and position parameters.

reldir value
Position 0
(Before)

Position 1
(After)

Position 2 (At front) Position 3 (At end)
Position 4
(Automatic)

NULL (omitted) Not valid Not valid Inserted as a main
directive at the
beginning of the file.

Inserted as a main
directive at the end
of the file.

Inserted as a main
directive at a
location
determined by
internal rules of
directive ordering.
Use this mode
when you are not
sure where to
insert.

Main directive Inserted as a
main directive
directly
proceeding
redir.

Inserted as a
main directive
directly
following reldir.

Inserted as a
subdirective at the
front of this
directive’s
subdirective list.

Inserted as a
subdirective at the
end of this
directive’s
subdirective list,
but proceeding the
close brace
subdirective ″}″.

Inserted as a
subdirective at a
location in this
directive’s
subdirective list as
determined by
internal rules of
subdirective
ordering. Use this
mode when you
are not sure
where to insert.

Chapter 2. Application Programming Interfaces 53

Table 3. Using the reldir and position parameters. (continued)

reldir value
Position 0
(Before)

Position 1
(After)

Position 2 (At front) Position 3 (At end)
Position 4
(Automatic)

Subdirective Inserted as a
subdirective
directly
proceeding
reldir.

Inserted as a
subdirective
directly
following reldir.

Not valid Not valid Not valid

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA106 E
Input configuration handle not valid.

HTPA107 E
Input directive handle in parameter &1 not valid.

HTPA111 E
Combination of insertion position and relative directive not valid.

Remove a Main Directive or Subdirective
(QzhbRemoveDirective) API

Required Parameter Group:
1 cfg Input Binary(4)
2 dir Input Binary(4)
3 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbRemoveDirective API to remove a main directive or subdirective from a
configuration file located in memory.

Authorities and locks
None.

Required parameter group
cfg

INPUT:BINARY(4)

The handle returned by a call to API QzhbOpenConfig.

dir
INPUT:BINARY(4)

The handle to the main directive or subdirective to be removed.

errcode
I/O:CHAR(*)

54 Web Programming Guide V4R5

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA106 E
Input configuration handle not valid.

HTPA107 E
Input directive handle in parameter &1 not valid.

Replace a Main Directive or Subdirective
(QzhbReplaceDirective) API

Required Parameter Group:
1 cfg Input Binary(4)
2 dir Input Binary(4)
3 value Input Char(*)
4 value_len Input Binary(4)
5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbReplaceDirective API to replace the string value of a main directive or
subdirective in a configuration file located in memory.

Authorities and locks
None.

Required parameter group
cfg

INPUT:BINARY(4)

The handle returned by a call to the QzhbOpenConfig API.

dir
INPUT:BINARY(4)

The handle to the main directive or subdirective to be changed.

value
INPUT:CHAR(*)

The character string to replace the directive. This string is not validated in any
way to ensure that it is a valid directive.

value_len
INPUT:BINARY(4)

The length of the value string must be greater than or equal to 1.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Chapter 2. Application Programming Interfaces 55

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA106 E
Input configuration handle not valid.

HTPA107 E
Input directive handle in parameter &1 not valid.

Server instance APIs
The server instance APIs are in *SRVPGM QZHBCONF in library QHTTPSVR. ILE
C programs must include header file QHTTPSVR/H(QZHBCONF).

While each individual API lists its own authorities, the following authorities are
needed to run all server instance APIs:
v *OBJOPR, *READ, *ADD, and *EXECUTE to the QUSRSYS library
v *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either

*OBJMGT or *OBJALTER to the QUSERSYS/QATMHINSTC file
v *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either

*OBJMGT or *OBJALTER to the QUSERSYS/QATMHINSTA file

Note: The QUSERSYS/QATMINSTA file is the administration (ADMIN) server
instance file.

Retrieve a list of all Server Instances
(QzhbGetInstanceNames) API

Required Parameter Group:
1 buf Output Void
2 buf_size Input Binary(4)
3 format Input Char(8)
4 buf_actlen Output Binary(4)
5 count Output Binary(4)
6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetInstanceNames API to retrieve a list of all server instance names
defined on your AS/400.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR and *READ authority to the QUSRSYS/QATMHINSTC file

Required parameter group
buf

OUTPUT:VOID

56 Web Programming Guide V4R5

The buffer where the instance names are placed. Specify a buffer name up to
10 characters (padded with blanks) as necessary.

buf_size
INPUT:BINARY(4)

The size of the buffer in bytes.

format
INPUT:CHAR(8)

The format of the data returned. The possible format names follow:
INSN0100

buf_actlen
OUTPUT:BINARY(4)

The length of all the instance names. Any data beyond the size specified in the
buf_size value is truncated by the system.

count
OUTPUT:BINARY(4)

The total number of instance names.

errcode
I/O:CHAR(*)

The structure in which to return error information.

INSN0100 Format
INSN0100 Format:

Offset Type Field

Dec Hex

0 0 CHAR(10) Instance name

10 0A CHAR(2) Reserved

12 0C BINARY(4) Running status

Field descriptions
Instance name

The 10 character name of the server instance, padded with blanks.

Running status
An integer value of 1 if this instance is currently running. An integer value
of 0 if this server instance is currently stopped.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

CPF3C21 E
Format name &1 not valid.

Chapter 2. Application Programming Interfaces 57

HTPA001 E
Input parameter &1 not valid

CPF9802 E
Not authorized to object &2 in &3.

Look up Server Instance Data (QzhbGetInstanceData) API

Required Parameter Group:
1 name Input Char(10)
2 buf Output Void
3 buf_size Input Binary(4)
4 format Input Char(8)
5 buf_actlen Output Binary(4)
6 running Output Binary(4)
7 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetInstanceData API to get detailed data about a specific server
instance. This data includes whether the instance is currently running and all
start-up data.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR and *READ authority to the QUSRSYS/QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

The server instance name. The name can be up to 10 characters long (padded
with blanks).

buf
OUTPUT:VOID

The buffer where the instance names are placed. The buffer is defined based on
the format parameter. You may omit this parameter.

buf_size
INPUT:BINARY(4)

The size of the buffer in bytes. A size of 0 can be specified meaning that no
data is returned in the buffer, but the running variable is still set to indicate the
running status of the instance.

format
INPUT:CHAR(8)

The format in which the data should be returned. The possible format names
follow:
INSD0100

buf_actlen
OUTPUT:BINARY(4)

58 Web Programming Guide V4R5

The number of bytes available for instance data. For the INSD0100 format, the
buf_actlen value is 1104 bytes.

running
OUTPUT:BINARY(4)

Indicates if the server instance is running. If the instance is running, the
running parameter is set to 1. If the instance is not running, the running
parameter is set to 0. The running parameter can be omitted. If this value is
omitted (null), the running status is not queried by this API, and no
performance penalty is incurred for finding this information. See “Retrieve a
list of all Server Instances (QzhbGetInstanceNames) API” on page 56 for
another method to query the running status of all instances.

errcode
I/O:CHAR(*)

The structure in which to return error information.

INSD0100 Format

Offset
Decimal

Offset
Hexadecimal

Type Field

0 0 CHAR(10) Configuration

10 0A CHAR(10) Autostart

20 14 BINARY(4) Min threads

24 18 BINARY(4) Max threads

28 1C BINARY(4) CCSID

32 2A CHAR(10) Outgoing table name

42 20 CHAR(10) Outgoing table library

52 3E CHAR(10) Incoming table name

62 34 CHAR(10) Incoming table library

72 48 CHAR(512) Access log file

584 248 CHAR(512) Error log file

1096 448 BINARY(4) Non-secure port

1100 44C BINARY(4) Secure port

Field descriptions

Note: In the descriptions below, *GLOBAL indicates that the global server
parameter value for this field is used by the instance, and *CFG indicates
that the value from the named configuration file is used. All character
strings are padded with blanks as necessary, and are NOT null terminated.

Configuration
The 10 character name of the configuration used for this instance.

Autostart
Indicates if the instance starts automatically. It is a 10 character string that
contains *NO, *YES, or *GLOBAL.

Min threads
The minimum number of threads to use for this instance. It is an integer
from 0 to 999, where 0 means the *CFG value.

Chapter 2. Application Programming Interfaces 59

Max threads
The maximum number of threads to use for this instance. It is an integer
from -1 to 999, where 0 means the *CFG value and -1 means *NOMAX (no
maximum).

CCSID
The character set to be used by the instance. It is an integer from 0 to
65533, where 0 means *GLOBAL.

Outgoing table name
The name of the table object to use as the EBCDIC to ASCII conversion
table for outgoing data. It is a 10 character name or *GLOBAL.

Outgoing table library
The library containing the EBCDIC to ASCII table. This field is blank if the
outgoing table name is *GLOBAL.

Incoming table name
The name of the table object to use as the ASCII to EBCDIC conversion
table for incoming data. It is a 10 character name or *GLOBAL.

Incoming table library
The library containing the ASCII to EBCDIC table. This field is blank if the
incoming table name is *GLOBAL.

Access log file
The path to the access log file as a 512 character string. This is an IFS type
path name in the job CCSID, or *CFG.

Error log file
The path to the access log file as a 512 character string. This is an IFS type
path name in the job CCSID, or *CFG

Non-secure port
The TCP port where the server will listen for normal HTTP connections. It
is an integer from 0 to 65535, where 0 means *CFG.

Secure port
The TCP port where the server will listen for secure SSL HTTPS
connections. It is an integer from 0 to 65535, where 0 means *CFG.

Error messages
CPF3C21 E

Format name &1 not valid.

CPF3CF1 E
Error code parameter not valid.

CPF9802 E
Not authorized to object &2 in &3.

HTPA001 E
Input parameter &1 not valid.

HTPA101 E
Server instance &1 not found or is unreadable.

Change Server Instance Data (QzhbChangeInstanceData) API

Required Parameter Group:
1 name Input Char(10)
2 idata Input Void

60 Web Programming Guide V4R5

3 idata_size Input Binary(4)
4 format Input Char(8)
5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbChangeInstanceData API to change the start-up data for a specific
server instance. This API provides a structure for input, even when not changing
values, to all start-up data values to be set for a server instance. This API is
typically used following a call to the QzhbGetInstanceData API, and after one or
more fields in the structure have been modified.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR, *OBJMGT, *ADD, and *DLT authority to the

QUSRSYS/QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

The server instance name. The name can be up to 10 characters long (padded
with blanks).

idata
INPUT:VOID

The buffer where the instance data is stored. The contents of the buffer is
defined by the format specifed by the format parameter. All fields in the idata
parameter must contain valid values.

idata_size
INPUT:BINARY(4)

The size of the idata structure. The minimum size is the length needed for the
INSD0100 format, 1104 bytes.

format
INPUT:CHAR(8)

The format of the data returned. The possible format names follow:
INSD0100

For information about the INSD0100 format, see “INSD0100 Format” on
page 59.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

Chapter 2. Application Programming Interfaces 61

CPF3C1D E
Input variable length in parameter &1 not valid.

CPF3C21 E
Format name &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA101 E
Server instance &1 not found or is unreadable.

HTPA102 E
Unable to update server instance &1.

HTPA103 E
Value in field &1 of the instance data structure not valid.

Create a Server Instance (QzhbCreateInstance) API

Required Parameter Group:
1 name Input Char(10)
2 idata Input Void
3 idata_size Input Binary(4)
4 format Input Char(8)
5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbCreateInstance API to create a new server instance. This API provides a
structure for input to all start-up data values to be set for a new server instance.
Use this API following a call to the QzhbGetInstanceData API to create an instance
based on an existing instance.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *EXECUTE and *ADD authority to the QUSRSYS library
v *OBJOPR, *ADD, *DLT, and either *OBJMGT or *OBJALTER authority to the

QUSRSYS/QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

The name for the new server instance you want to create. The name can be up
to 10 characters long (padded with blanks).

idata
INPUT:VOID

The buffer where the instance data is stored. The contents of the buffer is
defined by the format specifed by the format parameter. All fields in the idata
parameter must contain valid values.

idata_size
INPUT:BINARY(4)

The size of the idata structure. The minimum size is the length needed for the
INSD0100 format, 1104 bytes.

62 Web Programming Guide V4R5

format
INPUT:CHAR(8)

The format of the data returned. The possible format names follow:
INSD0100

For information about the INSD0100 format, see “INSD0100 Format” on
page 59.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

CPF3C21 E
Format name &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA102 E
Unable to update server instance &1.

HTPA103 E
Value in field &1 of the instance data structure not valid.

CPF9802 E
Not authorized to object &2 &3.

Delete a Server Instance (QzhbDeleteInstance) API

Required Parameter Group:
1 name Input Char(10)
2 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbDeleteInstance API to delete a server instance.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *EXECUTE authority to the QUSRSYS library
v *OBJOPR, *OBJEXIST, *DLT and either *OBJMGT or *OBJALTER authority to the

QUSRSYS/QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

The server instance name you want to delete. The name can be up to 10
characters long (padded with blanks).

Chapter 2. Application Programming Interfaces 63

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid

HTPA101 E
Server instance &1 not found or is unreadable.

HTPA102 E
Unable to update server instance &1.

CPF9802 E
Not authorized to object &2 &3.

Group file APIs
The group file APIs are in *SRVPGM QZHBCONF in library QHTTPSVR. ILE C
programs must include header file QHTTPSVR/H(QZHBCONF).

Create a new Group File (QzhbCreateGroupList) API

Required Parameter Group:
1 path Input Binary(4)
2 path_len Input Binary(4)
3 grplist Output Binary(4)
4 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbCreateGroupList API to create a new empty group file, and return a
handle to that empty in-memory version of the file. Normally this API would be
followed by calls to the QzhbAddGroupToList and QzhbAddUserToGroup APIs,
followed by the QzhbCloseGroupList API to write group information out.

Upon successful completion of this API, a new group list handle is returned. This
is a handle much like the one returned by the QzhbOpenGroupList API against an
already existing file, with a writelock argument of 1 (TRUE). After a call to the
QzhbCreateGroupList API the new file is left open for write access and the
QzhbCloseGroupList API can be invoked with a write argument of 1. For more
details about the writelock argument, see “Read a Group File into Memory
(QzhbOpenGroupList) API” on page 65.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *X authority to each directory in the path of the specified group file
v *WX authority to the last directory in the path that will contain the group file

path

64 Web Programming Guide V4R5

Required parameter group
path

INPUT:BINARY(4)

The path to the group file to be created in the Integrated File System. You can
specify an absolute or relative path to the working directory. This path should
be in the job CCSID.

path_len
INPUT:BINARY(4)

The length of the path string.

grplist
OUTPUT:BINARY(4)

The variable that receives the integer handle of the newly created empty group
list. Subsequent API calls use this handle.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA202 E
Unable to update group file &1.

HTPA208 E
Group file &1 already exists.

Read a Group File into Memory (QzhbOpenGroupList) API

Required Parameter Group:
1 path Input Binary(4)
2 path_len Input Binary(4)
3 writelock Input Binary(4)
4 grplist Output Binary(4)
5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbOpenGroupList API to read in an existing group file, and return a
handle to an in-memory version of the file. See “Free Group File from Memory
(QzhbCloseGroupList) API” on page 67 for information about freeing memory and
optionally writing the group list information out.

Authorities and locks
To invoke this API, the user must have the following authorities:
v *X authority to each directory in the path of the specified group file

Chapter 2. Application Programming Interfaces 65

v *R authority to the group file for a writelock value of 0
v *RW authority to the group file for a writelock value of 1

Required parameter group
path

INPUT:BINARY(4)

The path to the group file to be created in the Integrated File System. You can
specify an absolute or relative path to the working directory.

path_len
INPUT:BINARY(4)

The length of the path string.

writelock

If the value is 1, the group file is opened for write access with a lock and kept
open. No other user is allowed to update the group file while the lock is in
place. The group file is closed and the lock released by invoking the
QZHbCloseGroupList API. If the value is 0, then the following are true:
v The group file is opened for read access
v A lock is not placed on the group file
v The group file does not remain open

Note: You must specify a writelock of 1 in order to later specify a write
argument of 1 on the QzhbCloseGroupList API. If you do not hold the
group file open for write, the QzhbCloseGroupList API will not write
the contents of the file.

grplist
OUTPUT:BINARY(4)

The handle of the group list. Subsequent API calls use this handle.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA201 E
Group file &1 not found or is unreadable.

HTPA202 E
Unable to update group file &1.

66 Web Programming Guide V4R5

Free Group File from Memory (QzhbCloseGroupList) API

Required Parameter Group:
1 grplist Input Binary(4)
2 write Input Binary(4)
3 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbCloseGroupList API to free the memory of an in-memory copy of a
group file. You can optionally write the in-memory version of the group list back
to the group file before the memory is freed.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList API or
QzhbOpenGroupList API.

write
INPUT:BINARY(4)

The value of 0 (false) or a value of 1 (true), indicating whether or not to write
the contents of the in-memory group list back to the group file before freeing it
from memory. If you specify 1 for this parameter, and the write fails, the
memory is not freed and the grplist handle is still valid.

Note: In order to specify a write value of 1, you must have previously used
either the QzhbCreateConfigList API or specified a writelock of 1 on the
QzhbOpenGroupList API. If these conditions are not met, the contents of
the file are not written.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA202 E
Unable to update group file &1.

HTPA203 E
Input group list handle in parameter &1 not valid.

Chapter 2. Application Programming Interfaces 67

Retrieve the next Group in the Group List
(QzhbGetNextGroup) API

Required Parameter Group:
1 grplist Input Binary(4)
2 prev_grp Input Binary(4)
3 grp Output Binary(4)
4 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetNextGroup API to retrieve the next group from an in-memory
group list.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

prev_grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup,
QzhbGetNextGroup, QzhbFindGroupInList, or QzhbAddGroupToList API, that
returns the group immediately following this group. A handle of 0 returns the
first group in the group list.

grp
OUTPUT:BINARY(4)

The group name handle returned if the next group is found in the list. If no
next group exists, then error HTPA206 is returned.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

HTPA204 E
Input group handle in parameter &1 not valid.

HTPA206 E
Group file &1 not found in group list.

68 Web Programming Guide V4R5

Locate a named group in a Group List (QzhbFindGroupInList)
API

Required Parameter Group:
1 grplist Input Binary(4)
2 group Input Binary(4)
3 group_len Input Binary(4)
4 grp Output Binary(4)
5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbFindGroupInList API to search an in-memory group list for a named
group.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

group
INPUT:CHAR(*)

The group name for which the system will search the list . The group name is
case-sensitive. Leading and trailing blanks are included with the name.

group_len
INPUT:BINARY(4)

The length of the group name string. The length must be greater than or equal
to 1.

grp
OUTPUT:BINARY(4)

The group name handle returned if the named group was found in the list.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

Chapter 2. Application Programming Interfaces 69

HTPA206 E
Group file &1 not found in group list.

Retrieve the Name of a Group (QzhbGetGroupName) API

Required Parameter Group:
1 grplist Input Binary(4)
2 grp Input Binary(4)
3 buf Output Char(*)
4 buf_len Input Binary(4)
5 buf_actlen Output Binary(4)
6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetGroupName API to retrieve the name of a group using the group
handle.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup,
QzhbFindGroupInList, or QzhbAddGroupToList API.

buf
OUTPUT:BINARY(4)

The buffer to receive the group name.

buf_len
OUTPUT:BINARY(4)

The size of the buffer.

buf_actlen
OUTPUT:BINARY(4)

The actual length of the group name. If the buf_actlen value is greater than the
buf_len value, the data is truncated.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

70 Web Programming Guide V4R5

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

HTPA204 E
Input group handle in parameter &1 not valid.

Add a new Group to the end of a Group List
(QzhbAddGroupToList) API

Required Parameter Group:
1 grplist Input Binary(4)
2 group Input Char(*)
3 group_len Input Binary(4)
4 grp Output Binary(4)
5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbAddGroupToList API to add a new group to an in-memory group list.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

group
INPUT:CHAR(*)

The group name to add to the list.

group_len
INPUT:BINARY(4)

The length of the group name. The length must be greater than or equal to 1.

grp
OUTPUT:BINARY(4)

The handle of the newly created group, or the handle of an existing group if
the named group already exists. Attempting to add a group that already exists
is not considered an error by the system.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Chapter 2. Application Programming Interfaces 71

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

Remove a Group from a Group List
(QzhbRemoveGroupFromList) API

Required Parameter Group:
1 grplist Input Binary(4)
2 grp Input Binary(4)
3 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbRemoveGroupFromList API to remove a named group, and all the users
in that group, from an in-memory group list.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup,
QzhbFindGroupInList, or QzhbAddGroupToList API.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

HTPA204 E
Input group handle in parameter &1 not valid.

72 Web Programming Guide V4R5

Retrieve the next User in the Group (QzhbGetNextUser) API

Required Parameter Group:
1 grplist Input Binary(4)
2 grp Input Binary(4)
3 prev_usr Input Binary(4)
5 usr Output Binary(4)
6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetNextUser API to retrieve the next user from a group.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup,
QzhbFindGroupInList, or QzhbAddGroupToList API.

prev_usr
INPUT:BINARY(4)

The user handle for an existing user that returns the user immediately
following this user. A handle of 0 returns the first user in the group list.

usr
OUTPUT:BINARY(4)

The handle of the user if a next user is found in the group. If no next user is
found, error HTPA207 is returned.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

HTPA204 E
Input group handle in parameter &1 not valid.

Chapter 2. Application Programming Interfaces 73

HTPA205 E
Input user handle in parameter &1 not valid.

HTPA207 E
User &1 not found in group.

Locate a User in a Group (QzhbFindUserInGroup) API

Required Parameter Group:
1 grplist Input Binary(4)
2 grp Input Binary(4)
3 user Input Char(*)
4 user_len Input Binary(4)
5 usr Output Binary(4)
6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbFindUserInGroup API to search an in-memory group for a specific
user.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup,
QzhbFindGroupInList, or QzhbAddGroupToList API.

user
INPUT:CHAR(*)

The user name for which the system will search the group . The user name is
case-sensitive. Leading and trailing blanks are included with the name.

user_len
INPUT:BINARY(4)

The length of the user string. The length must be greater than or equal to 1.

usr
OUTPUT:BINARY(4)

The handle of the user if it was found in the group.

errcode
I/O:CHAR(*)

The structure in which to return error information.

74 Web Programming Guide V4R5

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

HTPA204 E
Input group handle in parameter &1 not valid.

HTPA207 E
User &1 not found in group.

Retrieve the Name of a User (QzhbGetUserString) API

Required Parameter Group:
1 grplist Input Binary(4)
2 grp Input Binary(4)
3 usr Input Binary(4)
4 buf Output Char(*)
5 buf_len Input Binary(4)
6 buf_actlen Output Binary(4)
7 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetUserString API to retrieve the name string of a group member
given the user handle, as returned by the QzhbGetNextUser,
QzhbFindUserInGroup, or QzhbAddUserToGroup API.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup,
QzhbFindGroupInList, or QzhbAddGroupToList API.

usr
INPUT:BINARY(4)

The user handle returned from a call to the QzhbGetNextUser,
QzhbFindUserInGroup, or QzhbAddUserToGroup API.

Chapter 2. Application Programming Interfaces 75

buf
OUTPUT:CHAR(*)

The buffer to receive the user string.

buf_len
INPUT:BINARY(4)

The size of the buffer.

buf_actlen
OUTPUT:BINARY(4)

The actual length of the user string. If the buf_actlen value is greater than the
buf_len value, the data is truncated by the system.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

HTPA204 E
Input group handle in parameter &1 not valid.

HTPA205 E
Input group handle in parameter &1 not valid.

Add a new user to the end of a Group (QzhbAddUserToGroup)
API

Required Parameter Group:
1 grplist Input Binary(4)
2 grp Input Binary(4)
3 user Input Char(*)
4 user_len Input Binary(4)
5 usr Output Binary(4)
6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbAddUserToGroup API to add a new user to an in-memory group.

Authorities and locks
None.

76 Web Programming Guide V4R5

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup,
QzhbFindGroupInList, or QzhbAddGroupToList API.

user
INPUT:CHAR(*)

The user name to be added to the group.

user_len
INPUT:BINARY(4)

The length of the user string. The length must be greater than or equal to 1.

usr
OUTPUT:BINARY(4)

The handle of the newly created user, or the handle of an existing user if the
named user already exists in the group. Attempting to add a user that already
exists is not considered an error by the system.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

CPF3C1D E
Input variable length in parameter &1 not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

HTPA204 E
Input group handle in parameter &1 not valid.

Remove a User or Element from a Group
(QzhbRemoveUserFromGroup) API

Required Parameter Group:
1 grplist Input Binary(4)
2 grp Input Binary(4)
3 usr Input Binary(4)

Chapter 2. Application Programming Interfaces 77

4 errcode I/O Char(*)
Threadsafe: Yes

Use the QzhbRemoveUserFromGroup API to remove a user from an in-memory
group.

Authorities and locks
None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList or
QzhbOpenGroupList API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup,
QzhbFindGroupInList, or QzhbAddGroupToList API.

usr
INPUT:BINARY(4)

The user handle returned from a call to the QzhbGetNextUser,
QzhbFindUserInGroup, or QzhbAddUserToGroup API.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.

HTPA001 E
Input parameter &1 not valid.

HTPA203 E
Input group list handle in parameter &1 not valid.

HTPA204 E
Input group handle in parameter &1 not valid.

HTPA205 E
Input user handle in parameter &1 not valid.

78 Web Programming Guide V4R5

Chapter 3. Using Net.Data to Write CGI Programs for You

This chapter discusses Net.Data for AS/400.

Net.Data is an application that runs on a server and allows you to easily create
dynamic web documents that are called web macros. Web macros that are created
for Net.Data have the simplicity of HTML with the functionality of CGI-BIN
applications. Net.Data makes it easy to add live data to static web pages. Live data
includes information that is stored in databases, files, applications, and system
services.

Overview of Net.Data
Net.Data is a comprehensive web development environment for the creation of
simple dynamic web pages or complex web-based applications. These applications
enable browser clients to access data from a variety of sources, such as databases,
applications, and system services.

Net.Data consists of a program, the web macro processor, and one or more
dynamic libraries, called language environments. The executable input to Net.Data
is the web macro.

The web macro processor communicates with IBM HTTP Server through its
CGI-BIN interface. The server uses TCP/IP to connect to the Internet. Like other
CGI-BIN programs, Net.Data is typically stored in the server’s CGI-BIN directory.
Net.Data is accessed when a URL received by the server refers to the web macro
processor operable, DB2WWW, in the CGI-BIN directory.

Language environments are the web macro processor’s interface to your data and
applications. Each language environment provides a specific interface to a
particular resource. For example, Net.Data provides language environments to
access DB2® databases, REXX, and other applications via the SYSTEM language
environment.

A web macro is a file that contains a series of statements that are defined by the
Net.Data web macro language. These statements can include standard HTML and
language environment-specific statements (for example, SQL statements) as well as
macro directives. These statements act as instructions to the web macro processor,
telling it how to construct dynamic web pages.

When a URL is received by the server that refers to the web macro processor
program, the server starts an instance of the web macro processor. It then passes
essential information, including the name of the requested web macro and the
section of the macro to use. The web macro processor then:
1. Reads and parses through the web macro
2. Interprets all the macro statements, and
3. Dynamically builds the HTML page

When a web macro language %FUNCTION statement is encountered, the web
macro processor loads the requested language environment-dynamic library
(service program). It then passes language-specific information to the language

© Copyright IBM Corp. 1997, 2000 79

environment to be processed. The language environment processes the information
and returns the results to the web macro processor.

After all parsing is done and language environment processing is completed, all
that remains is pure HTML text. This text can then be interpreted by any browser.
The web macro writer has complete control over the level of HTML it uses and
what HTML tags are applied. The web macro processor imposes no restrictions.
The pure HTML text is passed back to the server, and the web macro processor
ends. The resulting HTML text is passed to the browser where the user interacts
with it. Further requests from this user or any other user will result in the whole
process just described taking place again.

For more detailed information about Net.Data, including how to configure
Net.Data for the AS/400 and how to write Net.Data macros and language
environments, see this URL:
http://www.as400.ibm.com/netdata

80 Web Programming Guide V4R5

Chapter 4. Using Persistent CGI Programs

Overview of Persistent CGI 81
Named Activation Groups 81
Accept-HTSession CGI Header 81
HTTimeout CGI Header 82

Considerations for using Persistent CGI
Programs 82
Persistent CGI Program Example 83

Overview of Persistent CGI
Persistent CGI is an extension to the CGI interface that allows a CGI program to
remain active across multiple browser requests and maintain a session with that
browser client. This allows files to be left open, the state to be maintained, and
long running database transactions to be committed or rolled-back based on
end-user input. The AS/400 CGI program must be written using named activation
groups which allows the program to remain active after returning to the server.
The CGI program notifies the server it wants to remain persistent using the
″Accept-HTSession″ CGI header as the first header it returns. This header defines
the session ID associated with this instance of the CGI program and is not returned
to the browser. Subsequent URL requests to this program must contain the session
ID as the first parameter after the program name. The server uses this ID to route
the request to that specific instance of the CGI program. The CGI program should
regenerate this session ID for each request. It is strongly recommended that you
use Secure Sockets Layer (SSL) for persistent and secure business transaction
processing.

Named Activation Groups
CGI programs can be built using named activation groups by specifying a name on
the ACTGRP parameter of the CRTPGM or CRTSRVPGM commands. In doing this,
the initial call to the program within the job will still have the startup cost of
activating the program. However, an activation group is left active after the
program has exited normally. All storage associated with that program is still
allocated and in ″last-used″ state. The program is not initializated when it is called
again. In addition, for the ILE C runtime, all settings are in ″last-used″ state, such
as signal(), strtok(). The RCLACTGRP command is used to end a named activation
group. Use the DSPJOB OPTION(*ACTGRP) command to display all the activation
groups for the job. All ILE languages running on AS/400 can use this mechanism
to enable persistence for their CGI programs.

For additional information about activation groups see, ILE Concepts, SC41-5606
book.

Accept-HTSession CGI Header
This header specifies the session handle associated with this instance of the
Persistent CGI program. This session handle is used to route back subsequent
requests to that program and must be unique, or the server will not honor the
persistence request. A message is logged in the error log of the server.
Accept-HTSession = "Accept-HTSession" ":" handle

When the server receives this header, the CGI job servicing the request will be
reserved in a persistent state. Only requests coming in with that session handle in
the URL are routed back to that instance of the CGI program. The URL must be in
the following format:

© Copyright IBM Corp. 1997, 2000 81

/path/cgi-name/handle/rest/of/path

Where handle is an exact match of the handle provided in the ″Accept-HTSession″
CGI header for the program cgi-name.

Note: The cgi-name that is being resolved is the name as it appears in the URL. It
is not necessarily the actual name of the program being started on the
system. This is to remain consistent with the name resolution performed by
the server.

HTTimeout CGI Header
The HTTimeout header is for the CGI program to define the amount of time, in
minutes, that this CGI program wants to wait for a subsequent request. If not
specified, the value specified on the PersistentCGITimeout directive is used. If
specified, it takes precedence over the PersistentCGITimeout directive, but the
server will not wait longer than the time specified on the
MaxPersistentCGITimeout directive. This allows individual CGI programs to give
users more time to respond to lengthy forms or explanations. However, it still
gives the server ultimate control over the maximum time to wait.
HTTimeout = "HTTimeout" ":" minutes

The time-out value is a non-negative decimal integer, representing the time in
minutes. This header must be preceded by an ″Accept-HTSession″ header, if not, it
is ignored. If you omit the header, the default time-out value for the server is used.
When a CGI program is ended because of a time-out, a message is logged in the
error log of the server.

Considerations for using Persistent CGI Programs
You should be aware of the following considerations when using persistent CGI
programs:
v The web administrator can limit the number of persistent CGI programs that the

server supports by using the MaxPersistentCGI configuration directive.
v There are some job or thread-level resources that the server code running in the

CGI job usually manipulates (directly or indirectly) on behalf of CGI programs.
The following attributes will (potentially) change across calls:
– Environment variables the server sets
– Stdin/Stdout/Stderr file descriptors
– User profile
– Library list

v The server will not set the rest of the job attributes set by the server, and
therefore, will maintain state across calls if changed by the CGI program. Note,
however, that the CGI program must restore the initial state of these values
before ending its persistence in order to guarantee compatibility across
subsequent server requests:
– Job Language, Country, CCSID
– Job Priority
– Printer/Output Queue
– Message Logging
– Environment variables set by the CGI program

v For added security, web server administrators can protect their persistent CGI
programs using registered Internet users, thereby forcing authentication by the
user before processing each request.

82 Web Programming Guide V4R5

Persistent CGI Program Example
The following example shows a counter that is increased each time the Persistent
CGI program is called.
/***/
/ This is a sample Persistent CGI program */
/ This program is invoked by a URL */
/ http://hostname/cgi-bin/samplePersistent.pgm?bin=1) */
/***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define BUFSIZE 1024
unsigned int MAXINPUT = BUFSIZE; /* Maximum input data.*/

int count=1;

int main()
{

char *pt;
char carac[2]=" ";
int bin=1;

freopen("", "r", stdin); /* You need to re-open the stdin for the Persistent CGI Program

pt=getenv("QUERY_STRING");
carac[0]=pt[4];
bin=atoi(carac);

if(bin == 1)
{
printf("Accept-HTSession: webpg101101 \n");
printf("Content-type: text/html \n\n");
printf("<html><title>Test persistent CGI</title><body>");
printf("<h2> The first form</h2>");
printf("<form action=\"/cgi-bin/webpg101.pgm/webpg101101\" ");
printf("method=\"GET\"> ");
printf("<input type=HIDDEN NAME=BIN VALUE=2>");
printf("<input type=reset value=Reset>");
printf("</form></body></html>");
count++;
}
if(bin == 2)
{
pt=getenv("QUERY_STRING");
printf("Accept-HTSession: webpg101101 \n");
printf("Content-type: text/html \n\n");
printf("<html><title> Test persistent CGI</title><body>");
printf("<h2> The second form</h2>");
printf(" Valor count: %i",count);
printf("Query string: %s",pt);
printf("<form action=\"/cgi-bin/webpg101.pgm/webpg101101\" ");
printf("method=\"GET\"> ");
printf("<input type=HIDDEN NAME=BIN VALUE=3>");
printf("<h2>Persisten CGI si funcionan</h2>");
printf("<input type=submit value=Execute>");
printf("</form></body></html>");
count++;
}
if(bin == 3)
{
printf("Accept-HTSession: webpg101101 \n");
printf("Content-type: text/html \n\n");
printf("<html><title> Test persistent CGI</title><body>");
printf("<h2> The third form</h2>");

Chapter 4. Using Persistent CGI Programs 83

printf(" Valor count: %i",count);
printf("<form action=\"/cgi-bin/webpg101.pgm?bin=4/webpg101101\" ");
printf("method=\"GET\"> ");
printf("<h2>Persisten CGI si funcionan</h2>");
printf("<input type=HIDDEN NAME=BIN VALUE=4>");
printf("<input type=submit value=Execute>");
printf("</form></body></html>");
count++;
}
if(bin == 4)
{
printf("Accept-HTSession: webpg101101 \n");
printf("Content-type: text/html \n\n");
printf("<html><title> Test persistent CGI</title><body>");
printf("<form action=\"/cgi-bin/webpg101.pgm?bin=5/webpg101101\" ");
printf("method=\"GET\"> ");
printf("<h2> The fourth form</h2>");
printf(" Valor count: %i",count);
printf("<h2>Persisten CGI si funcionan</h2>");
printf("<input type=HIDDEN NAME=BIN VALUE=5>");
printf("<input type=submit value=Execute>");
printf("</form></body></html>");
count++;
}
if(bin == 5)
{
printf("Accept-HTSession: webpg101101 \n");
printf("Content-type: text/html \n\n");
printf("<html><title> Test persistent CGI</title><body>");
printf("<form action=\"/cgi-bin/webpg101.pgm?bin=6/webpg101101\" ");
printf("method=\"GET\"> ");
printf("<h2> The fifth form</h2>");
printf(" Valor count: %i",count);
printf("<h2>Persisten CGI si funcionan</h2>");
printf("<input type=HIDDEN NAME=BIN VALUE=6>");
printf("<input type=submit value=Execute>");
printf("</form></body></html>");
count++;
}
(bin == 6)
{
printf("Accept-HTSession: webpg101101 \n");
printf("Content-type: text/html \n\n");
printf("<html><title> Test persistent CGI</title><body>");
printf("<h2> The sixth form</h2>");
printf(" Valor count: %i",count);
printf("<h2>Persisten CGI si funcionan</h2>");
printf("</body></html>");
}
fflush(stdout);
return 0;
}

84 Web Programming Guide V4R5

Chapter 5. Enabling your AS/400 to run CGI programs

How to enable the server to run CGI programs . . 85
Using directives for security and access control . . 86

The default fail rule 87

Explicit CGI enablement 87
Server runs only CGI programs. 87

CGI program considerations 87

This chapter discusses the specific steps you need to take to enable your AS/400
for Common Gateway Interface (CGI) programs.

How to enable the server to run CGI programs
AS/400 stores some CGI programs in QSYS.LIB. You can write the programs in
C++, Rexx, Java, ILE-C, RPG, or COBOL. If the UserID directive is not active, the
server profile QTMHHTP1 needs access to the *PGM object and all objects the
program accesses. If the UserID directive is active, the UserID profile needs access
to the *PGM object and all objects the program accesses. The Exec directive is
required in the HTTP configuration to run a CGI program on the server.

Here is a summary of the steps you need to take to enable your AS/400 system to
run CGI programs:
1. Decide for which CGI mode you will write your program.
2. Write the C++, Rexx, Java, ILE-C, RPG, or COBOL program.
3. Compile your program.
4. Create the program object using CRTPGM. Add the Bind Service program,

QHTTPSVR/QZHBCGI when the program uses the server APIs
(QtmhWrStOut, QtmhRdStdIn, QtmhCvtDB, QtmhGetEnv, QtmhPutEnv
QzhbCgiParse, or QzhbCgiUtils).

5. Using the WRKHTTPCFG command, add an Exec directive that either
specifies the actual library where the program is stored or maps to the library
where the program is stored. Specify the CGI mode for your program. The
following directive is the library where the program is stored and also
indicates to the server to use EBCDIC mode:
Exec /QSYS.LIB/nnnnnnnn.LIB/* %%EBCDIC%%

Where nnnnnnnn is the library where the CGI program is stored.

The following directive maps to the library where the program is stored.
Exec /CGI-BIN/* /QSYS.LIB/nnnnnnnn.LIB/* %%EBCDIC%%

The advantage of using the mapping directives is that the actual location of
documents and programs is masked. Also, by setting the /cgi-bin values
correctly for Pass, Exec and Redirect, there is less chance of finding the wrong
directive.

Access to program object is *USE for QTMHHTP1 or *PUBLIC. You must set
*USE for QTMHHTP1 for the access to the program object, or you must
specify a user ID on a Userid directive in the server configuration. Setting the
access to *PUBLIC *USE would enable the server to run the CGI program,
regardless of whether you specify a user ID in the server configuration.

6. Store the HTML file on the AS/400 system by doing one of the following,
depending on the file system in which you wish to store the document:
v To store it in the AS/400 Source physical file:

© Copyright IBM Corp. 1997, 2000 85

a. Add a Pass directive using the WRKHTTPCFG command.
Pass /sample /qsys.lib/samplel.lib/samplef.file/samplem.mbr

Where samplel is the library, samplef is the file, and samplem is member
name in which the AS/400 stores this document.

b. Set the source type of samplem member to HTML(CHGPFM).
Access to file is *USE for QTMHHTTP or *PUBLIC(GRTOBJAUT).

v To store it in the Integrated File System webtest directory:
a. Add a Pass directive using the WRKHTTPCFG command.

Pass /sample /webtest/sample.html

where webtest is an integrated file system directory, and sample.html is
the document.

b. Access to file is *R for QTMHHTTP or *PUBLIC(CHGAUT).
v To store it in IFS QOpenSys/webtest directory:

a. Add a Pass directive using the WRKHTTPCFG command.
Pass /sample /qopensys/webtest/sample.html

where webtest is an integrated file system directory in QOpenSys file
system.

b. Access to file is *R for QTMHHTTP or *PUBLIC(CHGAUT).
v To store it in the QDLS folder:

a. Add a Pass directive using the WRKHTTPCFG command.
Pass /sample /qdls/webtest/sample.htm

Where webtest is a QDLS folder, and sample.htm is the document.
b. Access to file is *R for QTMHHTTP or *PUBLIC(CHGAUT).

7. Add QTMHHTTP to AS/400 directory entry(WRKDIRE).
8. Finally, still using WRKHTTPCFG, enable POST in your HTTP configuration

file. POST must be enabled in order for the server to serve CGI programs that
read standard input.

9. Start or restart the server.
10. Point your web browser to the URL for the HTML document on the server

where hostname is the fully qualified host domain name of your AS/400
system.
http://hostname/sample

Note: For REXX programs, you only need to indicate in the EXEC directive the
path and the file name. REXX CGI execs must reside in database files named
REXX or QREXSRC. For example:
EXEC /rexx/* /QSYS.LIB/AS400CGI.LIB/QREXSRC.FILE/*

The URL is :
http://hostname/rexx/samplecgi.rexx

Using directives for security and access control
The server administrator controls the behavior of the server. The server will not do
anything that the server administrator has not explicitly configured it to do.

Several features of the server ensure that the administrator maintains this control:

86 Web Programming Guide V4R5

v The default fail rule means that only requests that are authorized by the web
administrator are honored; other requests will fail.

v Explicit CGI enablement means that no CGI programs will run unless
specifically authorized

v Only CGI programs are run
v Only the read HTTP methods GET, POST, and HEAD are supported

The default fail rule
The server rejects, by default, all incoming requests unless the URL, as translated
by any preceding Map directives, matches a Pass, Redirect, or Exec directive that
has been explicitly coded by the server administrator:
v A match with a Pass directive enables the server to serve a document.
v A match with a Redirect directive causes the server to return a 302 response,

found in the HTTP response to the client application. This HTTP response
header field contains a location with the redirect request. The HTTP request that
matches a Redirect directive causes no data to be accessed. A subsequent request
generated by a client could cause data to be accessed.

v A match with an Exec directive enables the server to run a CGI program on
behalf of the client.

v A match with a Service directive enables the server to run a server API program
on behalf of the client.

Explicit CGI enablement
The server will not run a user-defined CGI program unless the server
administrator has explicitly enabled it by coding an Exec directive. The server
administrator can, for example, limit CGI requests to a specific library in QSYS.LIB.

Important!
It is the server administrator’s responsibility to verify that any CGI program
that is enabled does not violate the customer’s security policies for the
AS/400 system on which the server is running.

IBM recommends that the HTTP administrator move the DB2WWW *PGM
(the Net.Data CGI program) from the QHTTPSVR library to its own CGI
library. This allows users to run the CGI program while limiting access to the
QHTTPSVR library. Do not move any Include files from the QHTTPSVR
library.

Server runs only CGI programs
To run properly, programs that are called by the server must conform to the server
CGI interface. When the server is enabled to call a particular program on behalf of
a remote HTTP client application, the program is called and the output is returned
through the server CGI interface.

CGI program considerations
You need to understand that the security environment defined by the server
configuration directives that apply to your CGI programs.

Chapter 5. Enabling your AS/400 to run CGI programs 87

If the CGI program is covered by a protection directive that calls for basic
authentication, the user must supply a user ID and password before the CGI
program is allowed to run. The other protection subdirectives determine the
following:
v How the server validates the user ID and password
v What security environment the CGI program runs in

The subdirectives might tell the browser to treat the user ID as an AS/400 user
profile and to validate the password against it. In addition, the Userid subdirective
might be used to cause the server job to run under a specified AS/400 user profile
or the one the user entered. The following example protection setup would cause
the user ID to be treated as an AS/400 user profile, and to switch to that profile
when starting the CGI program:
Protection example1 {

AuthType Basic
Userid %%CLIENT%%
PasswdFile %%SYSTEM%%

}

If Userid %%SERVER%% had been specified, the CGI program will run under the
QTMHHTP1 user profile. If Userid FRED had been specified, the CGI program
would run under the FRED user profile.

Alternatively, the PasswdFile subdirective can identify a validation list. For
example:
PasswdFile qgpl/valist1

Validation lists contain a set of user IDs, their associated password, and optionally
other application-specific information. In this example, the server would
authenticate the user by comparing the specified user ID and password against the
specified validation list. If the user ID exists in the validation list and the password
matches, the CGI program would run under the QTMHHTP1 user profile.

Validation lists can be created through the CRTVLDL command. CGI or other
programs can add, remove, find, or change entries through a set of APIs
documented in the programming topic in the AS/400 Information Center. By using
validation lists, the CGI program can “register” users and associate other
information with each entry while at the same time using the basic authentication
functions of the HTTP server to authenticate requests.

88 Web Programming Guide V4R5

Chapter 6. Sample programs (in Java, C, and RPG)

This chapter contains samples of coding in Java, C, and RPG languages.

You can locate other programming samples through the following uniform
resource locator (URL):
http://www.as400.ibm.com/tstudio/index.htm

Example of Java language CGI program
The samplejava program takes environmental and form variables and displays
them back to the browser.

import java.io.DataInputStream;
import java.util.Hashtable;
import java.util.StringTokenizer;

class samplejava
{

int x;
int index;
Hashtable cgi_vars = null;

// String table with all the Environment Variables

String[] EnvVar = { "GATEWAY_INTERFACE",
"SERVER_NAME",
"SERVER_SOFTWARE",
"SERVER_PROTOCOL",
"SERVER_PORT",
"PATH_INFO",
"PATH_TRANSLATED",
"SCRIPT_NAME",
"DOCUMENT_ROOT",
"REMOTE_HOST",
"REMOTE_ADDR",

"AUTH_TYPE",
"REMOTE_USER",
"REMOTE_IDENT",
"HTTP_FROM",
"HTTP_ACCEPT",
"HTTP_USER_AGENT",
"HTTP_REFERER",
"REQUEST_METHOD",
"CONTENT_TYPE",
"CONTENT_LENGTH",
"QUERY_STRING"};

© Copyright IBM Corp. 1997, 2000 89

samplejava()
{

String userMethod;
String cl;
cl = new String();
// Get the REQUEST_METHOD variable (POST or GET)
userMethod = System.getProperty("REQUEST_METHOD");

if (userMethod != null)
{

if (userMethod.equalsIgnoreCase("POST"))
{

System.out.println("Server method not supporting");
System.exit(0);
}
else
{

// if the method is GET
if (userMethod.equalsIgnoreCase("GET"))
{

// Get the Value of Query String
cl = System.getProperty("QUERY_STRING");

}
else
{

errMsg("Invalid REQUEST_METHOD specified");
System.exit(0);

}
}

}
else
{

// Print No method
errMsg ("No REQUEST_METHOD specified");
System.exit(0);
}

if (cl == null)
{

errMsg ("No user data");
System.exit(0);

}
else
{

// fill the Hash table with the user values
cgi_vars = parseArguments(cl);

}
}

90 Web Programming Guide V4R5

private Hashtable parseArguments (String query_string)
{

Hashtable cgi_vars = new Hashtable();

// get the first token scan for the '&' char
StringTokenizer stringToken = new StringTokenizer(query_string,"&");

while (stringToken.hasMoreTokens())
{
index++;
// Split the first token into Variable and Value
StringTokenizer subToken = new StringTokenizer(stringToken.nextToken(),"=");

// Remove the '+' char from the Variable
String variable = plussesToSpaces(subToken.nextToken());

// Remove the '+' char from the Value
String value = plussesToSpaces(subToken.nextToken());

// Create the Keys to store the Variables and the Values in the Hash Table
// the keys will be variable1, value1, variable2, value2, and so forth
String temp1= new String("variable"+index);
String temp2= new String("value"+index);

// Store the variables and the values in the Hash table
cgi_vars.put(temp1,translateEscapes(variable));
cgi_vars.put(temp2,translateEscapes(value));

}
return cgi_vars;

}
private String plussesToSpaces(String query_string)

{

// Substitute the '+' char to a blank char
return query_string.replace('+', ' ');

}

private String translateEscapes(String query_string)
{

int percent_sign = query_string.indexOf('%');
int ascii_val;
String next_escape=null;
String first_part=null;
String second_part=null;

while (percent_sign != -1)
{
next_escape = query_string.substring(percent_sign + 1, percent_sign + 3);
ascii_val = (16 * hexValue(next_escape.charAt(0)) + hexValue(next_escape.charAt(1)));
first_part = query_string.substring(0, percent_sign);
second_part = query_string.substring(percent_sign + 3, query_string.length());
query_string = first_part + (char)ascii_val + second_part;
percent_sign = query_string.indexOf('%', percent_sign + 1);
}
return query_string;

Chapter 6. Sample programs (in Java, C, and RPG) 91

private int hexValue(char c)
{
int rc;

switch(c)
{
case '1':

rc = 1;
break;

case '2':
rc = 2;
break;

case '3':
rc = 3;
break;

case '4':
rc = 4;
break;

case '5':
rc = 5;
break;

case '6':
rc = 6;
break;

case '7':
rc = 7;
break;

case '8':
rc = 8;
break;

case '9':
rc = 9;
break;

case 'a':
case 'A':

rc = 10;
break;

case 'b':
case 'B':

rc = 11;
break;

case 'c':
case 'C':

rc = 12;
break;

case 'd':
case 'D':

rc = 13;
break;

case 'e':
case 'E':

rc = 14;
break;

case 'f':
case 'F':

rc = 15;
break;

default:
rc = 0;
break;

}
return rc;
}

92 Web Programming Guide V4R5

private void errMsg(String message)
{

System.out.println("Content-type: text/html\n");
System.out.println("<html>");
System.out.println("<head>");
System.out.println("<title>Error</title>");
System.out.println("</head>");
System.out.println("<body>");
System.out.println("<h1>Error</h1>");
System.out.println("<hr>");
System.out.println("<p>");
System.out.println("An internal error occurred.");
System.out.println("The specific error message is shown below:");
System.out.println("<p><pre>" + message + "</pre><p>");
System.out.println("<p>");
System.out.println("<hr>");
System.out.println("</body>");
System.out.println("</html>");
}

private void display()
{

System.out.println("Content-type: text/html\n");
System.out.println("<html>");
System.out.println("<head>");
System.out.println("<title>Environment and User Variables</title>");
System.out.println("</head>");
System.out.println("<body>");
System.out.println("<h1>Environment and User variables</h1>");
System.out.println("<h2>Environment Variables</h2>");
System.out.println("<table>");

for (int i=0; i<22; i++)
{

if (System.getProperty(EnvVar[i]) != null)
{

System.out.println("<tr>");
{

System.out.println("<tr>");
System.out.println("<td align=right>" + EnvVar[i] + " : ");
System.out.println("<td>" + System.getProperty(EnvVar[i]));

}
else
{

System.out.println("<tr>");
System.out.println("<td align=right>" + EnvVar[i] + " : ");
System.out.println("<td>NONE");

}
}

System.out.println("</table>");
System.out.println("</body>");
System.out.println("</html>");
System.out.flush();
}

public static void main (String args[])
{

samplejava cgi = new samplejava();
cgi.display();

}
}

Chapter 6. Sample programs (in Java, C, and RPG) 93

Example of C language CGI program
To call the SAMPLEC C program, add the following lines to an HTML form:

<form method="POST" action="/CGI-BIN/SAMPLEC.PGM">
<input name="YourInput" size=42,2>

Enter input for the C sample and click <input type="SUBMIT" value="ENTER">
<p>The output will be a screen with the text,
"YourInput=" followed by the text you typed above.
The contents of environment variable SERVER_SOFTWARE is also displayed.
</form>

The SAMPLEC program shows how to write a CGI program in C language.
/**/
/* */
/* Source File Name: QCSRC.SAMPLEC */
/* */
/* Module Name: SAMPLEC */
/* */
/* This sample code is provided by IBM for illustrative purposes only.*/
/* It has not been fully tested. It is provided as-is without any */
/* warranties of any kind, including but not limited to the implied */
/* warranties of merchantability and fitness for a particular purpose.*/
/* */
/* Source File Description: A sample of a C program executed as a */
/* CGI program on the AS/400 HTTP server. The program demonstrates */
/* reading standard input, reading environment variables and */
/* writing standard output. The input data comes from information */
/* typed in HTML fields. This program will read this input */
/* information and write exactly what is read to standard output. */
/* */
/* This program is a simple AS/400 ILE/C program that demonstrates */
/* the ILE/C function calls for reading standard input, reading */
/* environment variables and writing standard output. The fread() */
/* and printf() are used to read standard input and write standard */
/* output. getenv() is used to read HTTP server environment */
/* variables. The fread() and printf() are found in stdio.h header */
/* file and getenv() is found in stdlib.h. These includes are needed */
/* in any AS/400 ILE/C program reading standard input, writing */
/* standard output and reading environment variables. */
/* */
/* This program will write HTML type data to standard output. The */
/* first line of data written to standard output must be included and */
/* consists of the Content Type of the data that follows. */
/* */
/* Here are the steps to setting up and running this CGI program on */
/* the AS/400 HTTP server: */
/* */
/* 1-> Create HTML document as a member in a source physical file. */
/* 2-> Set Source type of HTML document to HTML. */
/* 3-> Create the *PGM object called SAMPLEC(CRTCMOD and CRTPGM). */
/* 4-> Check QTMHHTTP or *PUBLIC has access to document and QTMHHTP1 */
/* or *PUBLIC has access to program(DSPOBJAUT and GRTOBJAUT). */
/* (If configuration runs CGI request using Userid, The User */
/* profile specified on Userid directive must have access to */
/* program.) */
/* 5-> Set up HTTP server configuration directives(WRKHTTPCFG) */
/* 6-> Start the HTTP server instance(STRTCPSVR). */
/* 7-> Request the document from the browser. */
/* */
/* Sample the html form segment to run this sample CGI script: */
/* */
/* . */
/* . */
/* . */

94 Web Programming Guide V4R5

/* <form action="/cgi-bin/samplec" method="POST"> */
/* <input type="Text" maxsize=80 size=20 name="Sample"> */
/* <input type="Submit" name="SampleData" value="Submit CGI script"> */
/*
Sample CGI program written in AS/400 ILE/C.
 */
/* Type data and Click Submit to run a Sample program using ILE/C. */
/* </form> */
/* . */
/* . */
/* . */
/* Change the form method to "GET" when input data for sample CGI */
/* program comes from the QUERY_STRING environment variable. */
/* */
/* HTTP Server configuration: */
/* # Pass the html document in a library */
/* Pass /sampledoc /qsys.lib/websamp.lib/htmlfile.file/samplec.mbr */
/* # Allow CGI program to run. */
/* Map /cgi-bin/* /cgi-bin/*.pgm */
/* Exec /cgi-bin/* /qsys.lib/websamp.lib/* */
/* */
/* This program is invoked by a URL from a browser in the form: */
/* http://hostname/sampledoc */
/* */
/* Functions tested: Calls to Standard input and output using */
/* standard i/o c calls. This program uses */
/* fread(), putchar(), and printf(). It is */
/* designed to run on the AS/400 HTTP Server. */
/* */
/**/

#include <stdio.h> /* C-stdio library. */
#include <string.h> /* string functions. */
#include <stdlib.h> /* stdlib functions. */
#include <errno.h> /* errno values. */

#define LINELEN 80 /* Max length of line. */

/**/
/* */
/* Function Name: writeData() */
/* */
/* Descriptive Name: Function is used to print the data to the */
/* browser. The data is printed 80 characters/line to provide */
/* a neat and readable output. */
/* */
/* HTTP Server Environment variables: */
/* ---------------------------------- */
/* */
/* Standard Input: */
/* --------------- */
/* */
/* Standard Output: */
/* ---------------- */
/* All data directed to Standard output is sent using printf() or */
/* putchar(). Standard output is written with html text. */
/* */
/* */
/* Input: ptrToData : A pointer to the data to write to stdout. */
/* dataLen : Length of data buffer. */
/* */
/* Output: Data buffer written to stdout. */
/* */
/* Exit Normal: */
/* */

Chapter 6. Sample programs (in Java, C, and RPG) 95

/* Exit Error: None */
/* */
/**/
void writeData(char* ptrToData, int dataLen)
{

div_t insertBreak;
int i;

/*--*/
/* Write dataLen bytes of data from ptrToData. */
/*--*/
for (i=1; i<= dataLen; i++) {

putchar(*ptrToData);
ptrToData++;

/*--*/
/* Print a break after every 80 characters. */
/*--*/
insertBreak = div(i, LINELEN);
if (insertBreak.rem == 0)

printf("
");

}

return;

}

/**/
/* */
/* Function Name: main() */
/* */
/* Descriptive Name: A sample of the method used for AS/400 ILE/C to */
/* read standard input, write standard output and check environment */
/* variables; SERVER_SOFTWARE, REQUEST_METHOD, CONTENT_LENGTH, etc. */
/* */
/* HTTP Server Environment variables: */
/* ---------------------------------- */
/* The C function call, getenv, is used to read AS/400 server */
/* environment variables. The value of the argument is a (char *) */
/* pointer with the name of the environment variable. The value of */
/* the environment variable is always returned as a string pointer. */
/* The value may need to be converted to be used; that is */
/* CONTENT_LENGTH needs to be converted to int using atoi(). */
/* */
/* Standard Input: */
/* --------------- */
/* CONTENT_LENGTH is used to determine the amount of data to be */
/* read from standard input with fread(). The standard input is */
/* considered to be a stream of bytes up to CONTENT_LENGTH bytes. The */
/* standard input can be read with any file input stream function up */
/* to and including CONTENT_LENGTH bytes. Reading more than */
/* CONTENT_LENGTH bytes is not defined. */
/* */
/* Standard Output: */
/* ---------------- */
/* All data directed to Standard output is using writeData(). */
/* */
/* Standard output is written with html text which includes HTTP */
/* header lines identifying the content type of the data written and */
/* HTTP response headers. This MUST be followed by a blank line(\n\n)*/

96 Web Programming Guide V4R5

/* before writing any html text. This indicates the end of the */
/* header and the start of text that is served from the server. */
/* This text is usually html but can be plain/text. */
/* */
/* Input: Data read from standard input or QUERY_STRING that is */
/* entered in an HTML form. */
/* */
/* Output: The data read from standard input is written as is to */
/* standard output. This information would then be served by */
/* the HTTP server. */
/* */
/* Exit Normal: */
/* */
/* Exit Error: None */
/* */
/**/
void main()
{

char *stdInData; /* Input buffer. */
char *queryString; /* Query String env variable */
char *requestMethod; /* Request method env variable */
char *serverSoftware; /* Server Software env variable*/
char *contentLenString; /* Character content length. */
int contentLength; /* int content length */
int bytesRead; /* number of bytes read. */
int queryStringLen; /* Length of QUERY_STRING */

/*--*/
/* The "Content-type" is the minimum request header that must be */
/* written to standard output. It describes the type of data that */
/* follows. */
/*--*/
printf("Content-type: text/html\n");

/*--*/
/* VERY IMPORTANT! An extra newline must be written */
/* after the request header. In this case the request header is */
/* only the Content-type. This tells the HTTP server that the */
/* request header is ended and the data follows. */
/*--*/
printf("\n");

/*--*/
/* This html text consists of a head and body section. The head */
/* section has a title for the document. The body section will */
/* contain standard input, QUERY_STRING, CONTENT_LENGTH, */
/* SERVER_SOFTWARE and REQUEST_METHOD. */
/*--*/
printf("<html>\n");
printf("<head>\n");
printf("<title>\n");
printf("Sample AS/400 HTTP Server CGI program\n");
printf("</title>\n");
printf("</head>\n");
printf("<body>\n");
printf("<h1>Sample AS/400 ILE/C program.</h1>\n");
printf("
This is sample output writing in AS/400 ILE/C\n");
printf("
as a sample of CGI programming. This program reads\n");
printf("
the input data from Query_String environment\n");
printf("
variable when the Request_Method is GET and reads\n");
printf("
standard input when the Request_Method is POST.\n");

/*--*/
/* Get and write the REQUEST_METHOD to stdout. */
/*--*/
requestMethod = getenv("REQUEST_METHOD");

Chapter 6. Sample programs (in Java, C, and RPG) 97

if (requestMethod)
printf("<h4>REQUEST_METHOD:</h4>%s\n", requestMethod);

else
printf("Error extracting environment variable REQUEST_METHOD.\n");

/*--*/
/* html form data can be provided to the CGI program either on */
/* stdin or in environment variable QUERY_STRING. This can be */
/* determined by examining REQUEST_METHOD. */
/*--*/
if (strcmp(requestMethod,"POST") == 0) {

/*--*/
/* The REQUEST_METHOD is "POST". The environment variable */
/* CONTENT_LENGTH will tell us how many bytes of data to read */
/* from stdin. Note: CONTENT_LENGTH must be convert to an int. */
/*--*/
contentLenString = getenv("CONTENT_LENGTH");
contentLength = atoi(contentLenString);

/*--*/
/* Write CONTENT_LENGTH to stdout. */
/*--*/
printf("<h4>CONTENT_LENGTH:</h4>%i

\n",contentLength);

if (contentLength) {

/*--*/
/* Allocate and set memory to read stdin data into. */
/*--*/
stdInData = malloc(contentLength);
if (stdInData)

memset(stdInData, 0x00, contentLength);
else

printf("ERROR: Unable to allocate memory\n");
/*--*/
/* A CGI program MUST read standard input as a stream */
/* file only up to and including CONTENT_LENGTH bytes. */
/* Never should a program read more than CONTENT_LENGTH */
/* bytes. A CGI program that reads standard input must */
/* never depend on an end of file flag. This will cause */
/* unpredictable results when the CGI program reads */
/* standard input. */
/*--*/
printf("<h4>Server standard input:</h4>\n");
bytesRead = fread((char*)stdInData, 1, contentLength, stdin);

/*--*/
/* If we successfully read all bytes from stdin, format and */
/* write the data to stdout using the writeData function. */
/*--*/
if (bytesRead == contentLength)

writeData(stdInData, bytesRead);
else

printf("
Error reading standard input\n");

/*--*/
/* Free the storage allocated to hold the stdin data. */
/*--*/
free(stdInData);

} else
printf("

There is no standard input data.");

} else if (strcmp(requestMethod, "GET") == 0) {
/*--*/
/* The REQUEST_METHOD is "GET". The environment variable */

98 Web Programming Guide V4R5

/* QUERY_STRING will contain the form data. */
/*--*/
queryString = getenv("QUERY_STRING");
if (queryString) {

/*--*/
/* Write the QUERY_STRING data to stdout. */
/*--*/
printf("<h4>Server input read from QUERY_STRING:</h4>");
queryStringLen = strlen(queryString);
if (queryStringLen)

writeData(queryString, queryStringLen);
else

printf("There is no data in QUERY_STRING.");

} else
printf("
Error getting QUERY_STRING variable.");

} else
printf("
<h2>ERROR: Invalid REQUEST_METHOD.</h2>");

/*--*/
/* Write break and paragraph html tag to stdout. */
/*--*/

printf("
<p>\n");

/*--*/
/* Write the SERVER_SOFTWARE environment variable to stdout. */
/*--*/
serverSoftware = getenv("SERVER_SOFTWARE");
if (serverSoftware)

printf("<h4>SERVER_SOFTWARE:</h4>%s\n", serverSoftware);
else

printf("<h4>Server Software is NULL</h4>");

/*---*/
/* Write the closing tags on HTML document. */
/*---*/
printf("</p>\n");
printf("</body>\n");
printf("</html>\n");

return;
}

Example of RPG language CGI program
To call the SAMPLE RPG program, add the following lines to an HTML form:

<form method="POST" action="/CGI-BIN/SAMPLE.PGM">
<input name="YourInput" size=42,2>

Enter input for the RPG sample and click <input type="SUBMIT" value="ENTER">
<p>The output will be a screen with the text,
"YourInput=" followed by the text you typed above.
The contents of environment variable SERVER_SOFTWARE is also displayed.
</form>

The SAMPLE program shows how to write a CGI program in RPG language.
**
**** Sample ILE RPG program. ***
**** ***
****This sample code is provided by IBM for illustrative purposes only.***
****It has not been fully tested. It is provided as-is without any ***
****warranties of any kind, including but not limited to the implied ***
****warranties of merchantability and fitness for a particular purpose.***

Chapter 6. Sample programs (in Java, C, and RPG) 99

**** ***
**** This program is a simple RPG program that demonstrates the HTTP ***
**** server APIs for reading standard input, reading an environment ***
**** variable and writing standard output. This is done using the ***
**** IBM AS/400 HTTP Server APIs. ***
**** ***
**** The HTML at the end of this listing in CTDATA HTML is the text ***
**** that is modified by this program, written to standard output and ***
**** served to a client. ***
**** ***
**** 1-> Create HTML document as source physical file in library. ***
**** 2-> Set Source type of HTML document to HTML. ***
**** 3-> Create the *PGM object called SAMPLE(CRTRPGMOD and CRTPGM). ***
**** -Include the service program QTCP/QTMHCGI when doing the ***
**** CRTPGM in the BNDSRVPGM or BNDDIR parameter. ***
**** 4-> Check QTMHHTTP or *PUBLIC has access to document and QTMHHTP1 ***
**** or *PUBLIC has access to program(DSPOBJAUT and GRTOBJAUT). ***
**** 5-> Set up HTTP server configuration directives(WRKHTTPCFG) ***
**** 6-> Start the HTTP server(STRTCPSVR). ***
**** 7-> Run request from a browser. ***
**** ***
****------------------------ IMPORTANT --------------------------------***
**** The input for this program comes from CGI standard input or ***
**** the environment variable, QUERY_STRING. For an HTTP request ***
**** method of POST, the input is read from standard input and ***
**** for an HTTP request method of GET, the input is read from ***
**** QUERY_STRING. For method POST, this program will only read 1024 ***
**** characters. For method GET, the program will not read any ***
**** input data when it exceeds 1024 characters. The QtmhGetEnv ***
**** API will set the length of the environment variable response ***
**** to the actual length and no data is read into the receive ***
**** buffer. ***
****------------------------ IMPORTANT --------------------------------***
**** ***
**** Sample html form segment to run this sample CGI script: ***
**** ***
**** . ***
**** . ***
**** . ***
**** <form action="/cgi-bin/sample" method="POST"> ***
**** <input type="Text" maxsize=80 size=20 name="Sample"> ***
**** <input type="Submit name="SampleData" value="Submit CGI script"> ***

Sample CGI program written in RPG.

**** Type data and Click Submit to run a Sample program using RPG. ***
**** </form> ***
**** . ***
**** . ***
**** . ***
**** ***
**** HTTP Server configuration: ***
**** # Pass the html document in a library ***
**** Pass /sampledoc /qsys.lib/websamp.lib/htmlfile.file/sample.mbr ***
**** # Allow CGI program to run. ***
**** Map /cgi-bin/* /cgi-bin/*.pgm ***
**** Exec /cgi-bin/* /qsys.lib/websamp.lib/* ***
**** ***
**** This program is invoked by a URL from a browser in the form: ***
**** http://hostname/sampledoc ***
**** ***
**
**** ***
**** Function of this SAMPLE program: ***
**** Sample ILE RPG AS/400 program to demonstrate AS/400 HTTP server ***
**** CGI program. It reads data from standard input based on the ***
**** Content_Length environment variable. The QtmhGetEnv System API ***
**** is used to get the Content_Length and set the InDataLn variable ***
**** used by the QtmhRdStdIn API. The data to be returned to the ***

100 Web Programming Guide V4R5

**** client to written to standard output using the QtmhWrStOut API. ***
**** The data will be returned as text/html. ***
**** ***
**
* Variables for the CGI interface API for QtmhRdStIn.
DBufIn S 1024a INZ
DBufInLn S 9b 0 INZ(1024)
DStdInLn S 9b 0
**
* Variables for the CGI interface API for QtmhGetEnv.
DEnvRec S 1024A INZ
DEnvRecLen S 9B 0 INZ(1024)
DEnvLen S 9B 0 INZ
DEnvName S 25A INZ('CONTENT_LENGTH')
DEnvNameLen S 9B 0 INZ(14)
**
*Variables for the CGI interface API for QtmhWrStout.
DBufOut S 2048a INZ
DBufOutln S 9b 0

*** Data structure for error reporting. ***
*** Copied from QSYSINC/QRPGLESRC(QUSEC). ***
*** The QUSBPRV must be initialized to 16. ***
*** This is the common error structure that is passed to the CGI APIs;***
*** QtmhWrStOut, QtmhRdStin, QtmhGetEnv and QtmhCvtDb. The Error ***
*** structure is documented in the "AS/400 System API Reference". ***

DQUSEC DS
D* Qus EC
D QUSBPRV 1 4B 0 INZ(16)
D* Bytes Provided
D QUSBAVL 5 8B 0
D* Bytes Available
D QUSEI 9 15
D* Exception Id
D QUSERVED 16 16
**
*** Constants for names of CGI APIs. ***
DAPIStdIn C 'QtmhRdStin'
DAPIStdOut C 'QtmhWrStout'
DAPIGetEnv C 'QtmhGetEnv'
**
* Prototype for c2n procedure that converts content length to numeric. ***
Dc2n PR 30p 9
Dc 32 options(*varsize)
**
* Compile-time array for HTML output. ***
Darrsize C 23
Dhtml S 80 DIM(arrsize) PERRCD(1) CTDATA
DContentLn S 9B 0 INZ(0)
DEnvCL S 20A INZ('CONTENT_LENGTH')
DEnvSS S 20A INZ('SERVER_SOFTWARE')
DEnvMethod S 20A INZ('REQUEST_METHOD')
DEnvQS S 20A INZ('QUERY_STRING')
DEnvMDResp S 30A INZ
DEnvSSResp S 50A INZ
DEResp S 4A INZ
D**
D* Define line feed that is required when writing data to std output. ***
Dlinefeed C x'15'
Dbreak C '
'
Dmaxdataln S 4B 0 INZ(1024)
D**
D* Some local variables used for adding newline in std output buffer. ***
Dcnt S 4B 0 INZ(1)
DWORK2 S 80A INZ
DResult S 9B 0 INZ

Chapter 6. Sample programs (in Java, C, and RPG) 101

**
* Start of CGI Program execution section...
**
* Initialize error code structure for error ids.
* This allows for 7 bytes in QUSEI for error message id.
C Z-ADD 16 QUSBPRV
**
**** Read the Environment variable, REQUEST_METHOD.
**
C MOVEL EnvMethod EnvName
C Z-ADD 14 EnvNameLen
C callb APIGetEnv
C parm EnvRec
C parm EnvRecLen
C parm EnvLen
C parm EnvName
C parm EnvNameLen
C parm QUSEC
C MOVEL EnvRec EnvMDResp
**
**** Is the REQUEST_METHOD, POST?
C 4 subst EnvRec:1 EResp
C EResp ifeq 'POST'
**
* Get Environment Variable 'Content_Length' using 'QtmhGetEnv' API
C MOVEL EnvCL EnvName
C Z-ADD 14 EnvNameLen
C CALLB APIGetEnv
C parm EnvRec
C parm EnvRecLen
C parm EnvLen
C parm EnvName
C parm EnvNameLen
C parm QUSEC
* Convert Content_Length to numeric.
C eval ContentLn=c2n(EnvRec)
* When the Content Length is greater than the buffer, Read maxdataln.
C ContentLn ifgt maxdataln
C Z-ADD maxdataln ContentLn
C endif
* Specify InDataLn to Content_Length value. Never should a CGI program
* ever attempt to read more than content length. Specification of more
* than content length in InDataLn is not defined.
C Z-ADD ContentLn BufInLn
**
* Read standard input
C callb APIStdIn
C parm BufIn
C parm BufInLn
C parm StdInLn
C parm QUSEC
C MOVEL StdInLn Result
C else
**
**** Read the Environment variable, QUERY_STRING.
**
C MOVEL EnvQS EnvName
C Z-ADD 12 EnvNameLen
C callb APIGetEnv
C parm EnvRec
C parm EnvRecLen
C parm EnvLen
C parm EnvName
C parm EnvNameLen
C parm QUSEC
**
**** Check length of environment value is less than

102 Web Programming Guide V4R5

**** the receive buffer. When this occurs, the
**** QtmhGetEnv sets the EnvLen to the actual value
**** length without changing the receive buffer.
C EnvLen ifgt maxdataln
C eval Bufin='Data buffer +
C not big enough for +
C available input data.'
C Z-ADD 80 Result
C else
C MOVEL EnvRec BufIn
C MOVEL EnvLen Result
C endif
C endif
**
**** Read the Environment variable, SERVER_SOFTWARE.
**
C MOVEL EnvSS EnvName
C Z-ADD 15 EnvNameLen
C callb APIGetEnv
C parm EnvRec
C parm EnvRecLen
C parm EnvLen
C parm EnvName
C parm EnvNameLen
C parm QUSEC
C MOVEL EnvRec EnvSSResp
**
**** Put the data written to standard output in buffer; bufout. ***
**
* For each line of HTML, move it to BufOut and set the
* output buffer's length(BufOutLn).
C do arrsize i 5 0
* Write out HTTP response and HTML lines.
C i iflt 17
C BufOut cat html(i):0 BufOut
C BufOut cat linefeed:0 BufOut
C endif
* Add the data read from standard input or QUERY_STRING.
C i ifeq 17
D* Add html break to BufOut string written to standard output
D* when input is greater than 79.
C Result dowgt 79
C 80 SUBST BufIn:cnt WORK2
C cat work2:0 BufOut
C cat break:0 BufOut
* For V4R2, the newline after 254 characters is not needed.
C* cat linefeed:0 BufOut
C add 80 cnt
C sub 80 Result
C ENDDO
C IF Result > 0
C clear WORK2
C Result SUBST BufIn:cnt WORK2
C cat work2:0 BufOut
C cat break:0 BufOut
* For V4R2, the newline after 254 characters is not needed.
C* cat linefeed:0 BufOut
C ENDIF
C endif
* Add the Environment variable header line for REQUEST_METHOD.
C i ifeq 18
C BufOut cat html(i):0 BufOut
C BufOut cat break:0 BufOut
* For V4R2, the newline after 254 characters is not needed.
C* BufOut cat linefeed:0 BufOut
C endif
* Display the Environment variable REQUEST_METHOD.

Chapter 6. Sample programs (in Java, C, and RPG) 103

C i ifeq 19
C BufOut cat EnvMDResp:0 BufOut
* For V4R2, the newline after 254 characters is not needed.
C* BufOut cat linefeed:0 BufOut
C endif
* Add the Environment variable header line for SERVER_SOFTWARE.
C i ifeq 20
C BufOut cat html(i):0 BufOut
C BufOut cat break:0 BufOut
* For V4R2, the newline after 254 characters is not needed.
C* BufOut cat linefeed:0 BufOut
C endif
* Display the Environment variable SERVER_SOFTWARE.
C i ifeq 21
C BufOut cat EnvSSResp:0 BufOut
* For V4R2, the newline after 254 characters is not needed.
C* BufOut cat linefeed:0 BufOut
C endif
* Write out closing HTML lines.
C i ifgt 21
C BufOut cat html(i):0 BufOut
* For V4R2, the newline after 254 characters is not needed.
C* BufOut cat linefeed:0 BufOut
C endif
C enddo
**
**** Get length of data to be sent to standard output.
**
C z-add 1 i
C arrsize mult 80 i
C a doune ' '
C 1 subst bufout:i a 1
C sub 1 i
C enddo
C i add 1 BufOutLn
**
**** Send BufOut to standard output.
**
C callb APIStdOut
C parm BufOut
C parm BufOutLn
C parm QUSEC
**
* Return to caller
**
C return
**
* Function: Convert a character to numeric value. *
**
* nomain c2n subprocedure
Pc2n B export
Dc2n PI 30p 9
Dc 32 options(*varsize)
* variables
Dn s 30p 9
Dwknum s 30p 0
Dsign s 1 0 inz(1)
Ddecpos s 3 0 inz(0)
Dindecimal s 1 inz('0')
Di s 3 0
Dj s 3 0
D ds
Dalpha1 1
Dnumber1 1 0 overlay(alpha1) inz(0)
C eval c = %triml(c)
C ' ' checkr c j
C 1 do j i

104 Web Programming Guide V4R5

C eval alpha1=%subst(c:i:1)
C select
C when alpha1='-'
C eval sign= -1
C when alpha1='.'
C eval indecimal='1'
C when alpha1 >='0' and alpha1 <= '9'
C eval wknum = wknum * 10 + number1
C if indecimal = '1'
C eval decpos = decpos + 1
C endif
C endsl
C enddo
C eval n = wknum * sign / 10 ** decpos
C return n
Pc2n E
**
* Compile-time array follows:
**
* A line MUST follow Content-type with only a single newline(x'15'). If
* this newline does not exist, Then NO data will be served to the client.
* This newline represents the end of the HTTP header and the data follows.

**CTDATA HTML
Content-type: text/html

<html>
<head>
<title>Sample AS/400 RPG program executed by HTTP Server as a CGI</title>
</head>
<body>
<h1>Sample AS/400 RPG program.</h1>

<p>This is sample output using AS/400 HTTP Server CGI APIs from an RPG
program. This program reads the input data from Query_String
environment variable when the Request_Method is GET and reads
standard input when the Request_Method is POST.
<p>Server input:

<p>Environment variable - REQUEST_METHOD:

<p>Environment variable - SERVER_SOFTWARE:

</body>
</html>

Example of a C language server configuration API program
/*

This C source file is for compiling into the sample program
APISAMPLE.PGM. It invokes the new configuration file APIs
contained in SRVPGM QHTTPSVR/QZHBCONF to read in
a configuration file, and either replace an existing PORT
directive or to add a new one.

This code is written by IBM, and is intended only as a sample.
There is no implied support for this code, and it is not
a part of any IBM product. It can be freely copied, modified
and used in any way desired.

*/

#include <stdio.h>

Chapter 6. Sample programs (in Java, C, and RPG) 105

#include <stdlib.h>

#include <qusec.h> /* For errcode structure */
#include <qzhbconf.h> /* For group file API's */

int main (int argc, char **argv)
{

Qus_EC_t errcode; /* Error code structure */
unsigned char configname10[10]; /* Config name */
unsigned int cfghdl; /* Handle for config file */
unsigned int getlock = 1; /* Argument to request a write lock */
unsigned char valstr[100]; /* Value string argument */
unsigned int vallen; /* Length argument */
unsigned int numtofind = 0; /* Will be searching for last directive */
unsigned int casesense = 0; /* Case insensitive search */
unsigned int writecfg = 1; /* Write config back out */
unsigned int dirhdl; /* Handle for a directive */

if (argc <= 2 || strlen(argv[1]) > 10 || atoi(argv[2]) < 1) {
printf("usage: call lib/prog 'configname' 'portnumber'\n");
return 1;

}

/* Get config name into a 10 character format */
strncpy((char *) configname10, " ", 10);
strncpy((char *) configname10, argv[1], strlen(argv[1]));

/* Set up error code structure */
errcode.Bytes_Provided = sizeof(Qus_EC_t);

/* Open the config - program will end if error occurs */
QzhbOpenConfig(configname10, &getlock, &cfghdl, NULL);

/* Search for the last PORT directive in the file */
strcpy((char *) valstr, "port");
vallen = strlen((char *) valstr);
QzhbFindDirective(&cfghdl, valstr, &vallen, NULL,

&numtofind, &casesense, &dirhdl,
(unsigned char *) &errcode);

/* Build string containing what we want the PORT directive to look like */
sprintf((char *) valstr, "Port %s", argv[2]);
vallen = strlen((char *) valstr);

/* If found a PORT directive, replace it with our new value */
if (errcode.Bytes_Available == 0) {

/* Replace existing directive, letting error end the program */
QzhbReplaceDirective(&cfghdl, &dirhdl,

valstr, &vallen, NULL);
printf("Replaced existing PORT directive in configuration %s with: %s\n",

argv[1], valstr);
}

/* If did not find the PORT directive, we want to add a new one */
else {

unsigned int insertpos = 4; /* Automatic positioning */
/* Add new directive, letting error end the program */

QzhbAddDirective(&cfghdl, valstr, &vallen,
&insertpos, NULL, &dirhdl, NULL);

printf("Added new PORT directive in configuration %s as: %s\n",
argv[1], valstr);

106 Web Programming Guide V4R5

}

/* Close config and write contents back out */
QzhbCloseConfig(&cfghdl, &writecfg, NULL);

return 0;
}

Chapter 6. Sample programs (in Java, C, and RPG) 107

108 Web Programming Guide V4R5

Chapter 7. Writing Server API programs

Overview of the Server API
The Server API allows you to extend the server’s base functions. You can write
extensions to do customized processing, such as:
v Enhance the basic authentication or replace it with a site-specific process.
v Add error handling routines to track problems or alert for serious conditions.
v Detect and track information that comes in from the requesting client, such as

server referrals and user agent code.

General procedure for writing Server API programs
Before you start writing your Server API programs, you need to understand how
the IBM HTTP Server works. The server performs a sequence of steps for each
client request that it processes. Your program can run and make function calls at
any of these steps. You need to decide where in the basic server request process
you want to add customized functions. For example, do you want the server to do
something after it reads a client request but before it performs any other
processing? Or, maybe you want the server to perform special routines during
authentication and then after it sends the requested file.

You can instruct the server to call the application functions in your program at the
appropriate processing step. You can do this by using the API directives in your
server configuration file.

Guidelines
Use the following guidelines when creating Server API programs:
v If compiling on AS/400 with Integrated Language Environment (ILE)/C, ensure

that you include QHTTPSVR in the library list.
v Give each of your application functions a unique function name and call the

server predefined functions as needed. Be sure to include HTAPI.h and to use
the HTTPD_LINKAGE macro in your function definitions to avoid abending the
server. This macro ensures that all functions use the same calling conventions.

v The server runs in a multithreaded environment; therefore, your application
functions must be threadsafe. If your application is re-entrant, performance will
not decrease.

v Keep the actions in your applications to a thread scope. Do not perform any
actions as a process scope, such as exit or change user ID.

v Eliminate global variables or protect them with a mutual exclusion semaphore.
v Do not forget to set the Content-Type header if you are using HTTPD_write() to

send data back to the client.
v You also must take into consideration the Content-Encoding header when you

use HTTPD_write() to send data back to the client.
v Always check your return codes and provide conditional processing where

necessary.
v Compile and then create your service program by using CRTSRVPGM. When

using CRTSRVPGM, you must bind to QZHBIAPI *SRVPGM that is in the
QHTTPSVR library.

© Copyright IBM Corp. 1997, 2000 109

v Add Server API directives to your configuration file so that you can associate
your program’s application functions with the appropriate step. There is a
separate directive for each server request processing step. You must stop and
restart the server for the new directives take effect.

v Test your program rigorously. Because IBM HTTP Server is a theaded server,
you should apply more rigorous testing than you would for a forked server.
Because the server calls your program directly and they both run in the same
process space, errors in your program can stop the server.

Basic server request process
You can break down the basic server request process into a number of steps, based
on the type of processing the server is performing during that phase. Each step
includes a juncture at which a specified part of your program can run. The Server
API directives in your configuration file, indicate which of your application
functions you want called during a request process step.

Your compiled program exists as a service program. As the server proceeds
through its request process steps, it calls the application functions associated with
each step, until one of the functions indicates it has handled the request. If you
have more than one of your application functions indicated for a particular step,
your functions are called in the order in which they appear in the configuration
file.

If the request is not handled by an application function (either you did not include
a Server API directive or your application function for that step returned
HTTP_NOACTION), the server performs the default action for that step.

Note: This is true for all steps except the Service step; the Service step does not
have a default action.

The following list indicates the purpose of each step and defines the processing
order.

Server Initialization
Performs initialization functions before any client requests are read.

PreExit
Performs processing after a request is read but before anything else is
done.

If this step returns an indication that the request was processed
(HTTP_OK), only the Data Filter, Log and PostExit steps, in the request
process are performed.

Authentication
Decodes, verifies, and stores security tokens.

Name Translation
Translates the virtual path (from URL) to the physical path.

Authorization
Uses stored security tokens to check the physical path (protections, acls)
and generates the WWW-Authenticate headers required for basic
authentication. If you write your own application function to replace this
step, you must generate these headers yourself.

Object Type
Locates the file system object that is indicated by the path.

110 Web Programming Guide V4R5

Service
Satisfies the request (such as, send the file or run the CGI)

Data Filter
Gives write access to the outgoing data stream.

Log Allows transaction logging.

Error Allows customized responses to error conditions.

PostExit
Allows cleanup of resources that are allocated for request processing.

Server Termination
Allows cleanup processing when an orderly shutdown or restart occurs.

Application functions
Use the following function prototype syntax to write your own program functions
for the defined request steps.

Each of your functions must fill in the return code parameter with a value that
indicates the action that is taken.
v HTTP_NOACTION (value of 0) means no action that is taken.
v Otherwise, one of the valid HTTP return codes is expected, indicating that the

application function handled the step. As a result, no other application functions
are called to handle that step of this request.

The function prototypes for each request step show the format to use and explain
the type of processing they can perform. You must give your functions unique
names and can choose your own naming conventions. For ease of association,
these names relate to the server’s request processing steps.

Server Initialization
void
HTTPD_LINKAGE ServerInit(

unsigned char *handle, unsigned long *major_version,
unsigned long *minor_version, long *return_code);

This function is called once when your module is loaded during server
initialization. This is your opportunity to perform initialization before any
requests have been accepted. Although all server initialization functions are
called, error return codes from this step cause the server to ignore all other
functions that are configured in this program.

PreExit
void
HTTPD_LINKAGE PreExit(

unsigned char *handle, long *return_code);

This function is called after the request is read, but before any processing
has occurred.

All server-predefined functions are valid during this step.

Authentication
void
HTTPD_LINKAGE Authentication(

unsigned char *handle, long *return_code);

Chapter 7. Writing Server API programs 111

This function allows user verification of the security tokens. This step is
performed based on the authentication scheme.

Only HTTP_extract() and HTTPD_set() are valid during this step.

Name Translation
void
HTTPD_LINKAGE NameTrans(

unsigned char *handle, long *return_code);

This function provides a mechanism for mapping URLs to objects.

Only HTTPD_extract() and HTTPD_set() are valid during this step.

Authorization
void
HTTPD_LINKAGE Authorization(

unsigned char *handle, long *return_code);

This function verifies that the identified object may be returned to the
client. If you are doing basic authentication, you must generate the
required WWW-Authentication headers.

Only HTTPD_extract() and HTTPD_set() are valid functions during this
step.

Object Type
void
HTTPD_LINKAGE ObjType(

unsigned char *handle, long *return_code);

This step checks to see if the object exists and performs object typing.

Only HTTPD_extract() and HTTPD_set() are valid during this step.

Service
void
HTTPD_LINKAGE Service(

unsigned char *handle, long *return_code);

This function satisfies the request, if not satisfied in the PreExit.

All server-predefined functions are valid during this step. Refer to the
Enable directive in the HTTP Server for AS/400 Webmaster’s Guide,
GC41-5434 for information.

Data Filter
Filters data as a stream class, which means that each of its functions acts
like a segment of pipe down which data flows. For this step, you must use
three application functions:
void
HTTPD_LINKAGE open(

unsigned char *handle, long *return_code);

This function performs any initialization (such as buffer allocation) that is
required to process the data for this stream. An error return code causes
this filter to abort.

112 Web Programming Guide V4R5

void
HTTPD_LINKAGE write(

unsigned char *handle, unsigned char *data,
unsigned long *length, long *return_code);

This function processes the data and calls the server’s write function with
the new or changed data. The application must not attempt to free the
buffer passed to it nor expect the server to free the buffer it receives.
void
HTTPD_LINKAGE close(
unsigned char *handle, long *return_code);

This function performs any cleanup (such as flushing and freeing the
buffer) required to complete processing the data for this stream.

Log
void
HTTPD_LINKAGE Log(

unsigned char *handle, long *return_code);

This function is called after each request is processed and the
communication to the client is closed, regardless of the success or failure of
the request processing. Only HTTPD_extract() and HTTPD_set() are valid
during this step.

Error
void
HTTPD_LINKAGE Error(

unsigned char *handle, long *return_code);

This function is called only when an error is encountered and provides an
opportunity to customize the response.

PostExit
void
HTTPD_LINKAGE PostExit(

unsigned char *handle, long *return_code);

This function is called, regardless of the success or failure of the request, so
that you can clean up any resources that are allocated by your application
to process the request.

Server Termination
void
HTTPD_LINKAGE ServerTerm(

unsigned char *handle, long *return_code);

This function is processed when an orderly shutdown or restart of the
server occurs. It allows you to clean up resources that are allocated during
the Server Initialization step. Do not call any HTTP_* functions in this step
(the results are unpredictable). If you have more than one Server API
directive in your configuration file for Server Termination, they will all be
called.

HTTP return codes and values
These return codes follow the HTTP specification that is published by the World
Wide Web Consortium at URL: http://www.w3.org/pub/WWW/Protocols/. Your
application functions should return one of these values.

Chapter 7. Writing Server API programs 113

Value Return code

0 HTTP_NOACTION

100 HTTP_CONTINUE

101 HTTP_SWITCHING_PROTOCOLS

200 HTTP_OK

201 HTTP_CREATED

202 HTTP_ACCEPTED

203 HTTP_NON_AUTHORITATIVE

204 HTTP_NO_CONTENT

205 HTTP_RESET_CONTENT

206 HTTP_PARTIAL_CONTENT

300 HTTP_MULTIPLE_CHOICES

301 HTTP_MOVED_PERMANENTLY

302 HTTP_MOVED_TEMPORARILY

303 HTTP_SEE_OTHER

304 HTTP_NOT_MODIFIED

305 HTTP_USE_PROXY

400 HTTP_BAD_REQUEST

401 HTTP_UNAUTHORIZED

403 HTTP_FORBIDDEN

404 HTTP_NOT_FOUND

405 HTTP_METHOD_NOT_ALLOWED

406 HTTP_NOT_ACCEPTABLE

407 HTTP_PROXY_UNAUTHORIZED

408 HTTP_REQUEST_TIMEOUT

409 HTTP_CONFLICT

410 HTTP_GONE

411 HTTP_LENGTH_REQUIRED

412 HTTP_PRECONDITION_FAILED

413 HTTP_ENTITY_TOO_LARGE

414 HTTP_URI_TOO_LONG

415 HTTP_BAD_MEDIA_TYPE

500 HTTP_SERVER_ERROR

501 HTTP_NOT_IMPLEMENTED

502 HTTP_BAD_GATEWAY

503 HTTP_SERVICE_UNAVAILABLE

504 HTTP_GATEWAY_TIMEOUT

505 HTTP_BAD_VERSION

Predefined functions and macros
You can call the server’s predefined functions and macros from your own
application functions. You must use their predefined names and follow the format

114 Web Programming Guide V4R5

that is described in this section. Note that the parameter descriptions use the
letter″i″ to indicate input, the letter ″o″ to indicate output, and ″i/o″ to indicate
that a parameter is both input and output.

Each of these functions returns one of the HTTPD return codes, depending on the
success of the request.

HTTPD_authenticate()
Authenticates a user ID and password. Valid only in PreExit, Authenticate,
and Authorization steps.
void
HTTPD_authenticate(

unsigned char *handle, /* i; handle */
long *return_code); /* o; return code */

HTTPD_attributes
Extracts the attributes of a file. Valid in all steps.

The name of the file and the buffer containing the attributes are in the
default CCSID of the job.
void
HTTPD_attributes(

unsigned char *handle, /* i; handle (NULL right now) */
unsigned char *name, /* i; name of the file */
unsigned long *name_length, /* i; length of the name */
unsigned char *value, /* o; buffer containing attributes*/
unsigned long *value_length, /* i/o;size of buffer/length of attributes*/
long *return_code); /* o; return code */

HTTPD_extract()
Extracts the value of a variable associated with this request. The valid
variables you can use for the name parameter are the same as those used
in the CGI. This function is valid in all steps, however not all variables are.

The CCSID of the name of the value to extract and the buffer in which to
put the value depends upon the step and the CGI mode. For all steps
except Service, these parameters are in the default CCSID of the job. For
the Service step, the CGI mode determines the CCSID. For the
%%MIXED%% CGI mode, these fields are in EBCIDIC CCSID 37. For all
other CGI modes, these fields are in the default CCSID of the job.
void
HTTPD_extract(

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; name of value to extract /*
unsigned long *name_length, /* i; length of the name */
unsigned char *value, /* o; buffer in which to put value */
unsigned long *value_length, /* i/o; buffer size/length of value */

long *return_code); /* o; return code */

If this function returns the HTTPD_BUFFER_TOO_SMALL return code, the
buffer size you requested was not big enough for the extracted value. In
this case, the function does not fill in the buffer but does update
value_length with the buffer size you would need in order to successfully
extract this value. Retry the extract with a buffer that is at least as big as
the returned value_length.

Note: Server API programs gain access to information about a particular
HTTP request by examining predefined variables. This information
is obtained from the server using the HTTPD_extract() function. The
PASSWORD variable used when basic authentication is requested.

Chapter 7. Writing Server API programs 115

This password is associated with a user that is defined in a
validation list (*VLDL) or the password for a user profile on the
AS/400 system.

IBM HTTP Server for AS/400 does not allow access to the
PASSWORD variable if authorization is configured which uses
AS/400 user profiles and passwords for authentication.

To prevent an application from obtaining an AS/400 user profile
password, HTTPD_extract() is sensitive to the type of protect setups
that are currently configured. If a protection setup is configured
with a password file of %%SYSTEM%% (protection requiring
AS/400 user profile password), HTTP_extract() for PASSWORD
returns HTTP_PARAMETER_ERROR and sets the value parameter
to *CONFLICT. Otherwise, HTTP_extract() returns the appropriate
value.

HTTPD_reverse_translate()
Translates a file system path to a URL. Valid in all steps.

The name of the file system object and the buffer containing the URL are
in the default CCSID of the job.
void
HTTPD_reverse_translate(

unsigned char *handle, /* i; handle (NULL right now) */
unsigned char *name, /* i; name of the file system object */
unsigned long *name_length, /* i; length of the name */
unsigned char *value, /* o; buffer which contains the URL */
unsigned long *value_length, /* i/o; size of buffer/length of URL */

long *return_code); /* o; return code */

HTTPD_translate()
Translates a URL to a file system path. Valid in all steps.

The CCSID for QUERY_STRING depends upon the step and the CGI
mode. For all steps except Service, these parameters are in the default
CCSID of the job. For the Service step, the CGI mode determines the
CCSID. For the %%MIXED%% CGI mode, these fields are in EBCIDIC
CCSID 37. For all other CGI modes, these fields are in the default CCSID
of the job.
void
HTTPD_translate(
unsigned char *handle, /* i; handle (NULL right now) */
unsigned char *name, /* i; name of the URL */
unsigned long *name_length, /* i; length of the name */
unsigned char *url_value, /* o; buffer containing translated URL */
unsigned long *url_value_length, /* i/o; buffer size/length of translated URL */
unsigned char *path_trans, /* o; buffer containing PATH_TRANSLATED */
unsigned long *path_trans_length,/* i/o; size of buffer/length of PATH_TRANSLATED */
unsigned char *query_string, /* o; buffer containing QUERY_STRING */
unsigned long *query_string_length,/* i/o; size of buffer/length of QUERY_STRING */

long *return_code); /* o; return code */

HTTPD_set()
Sets the value of a variable associated with this request. The valid variables
you can use for the name parameter are the same as those are used by the
CGI program.

Note that you can also create variables with this function. If any variables
you create are prefixed by ″HTTP_″, they are sent as headers in the
response, without the ″HTTP_″ prefix. For example, if you want to see a
Location header, use HTTPD_set() with the variable name
HTTP_LOCATION.

116 Web Programming Guide V4R5

This function is valid in all steps, however not all variables are.

The CCSID of the name of the value to set and the buffer which contains
the value depends upon the step and the CGI mode. For all steps except
Service, these parameters are in the default CCSID of the job. For the
Service step, if you are not setting a variable with the ″HTTP″_prefix, then
the default CCSID of the job is used. For setting variables prefixed by
″HTTP_″ in the Service step, the CGI output mode determines the CCSID
to be used. For %%MIXED%% mode, both are in EBCIDIC 37. For other
CGI modes, they are in the default CCISID of the job.
void
HTTPD_set(

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; name of the value to set */
unsigned long *name_length, /* i; length of the name */
unsigned char *value, /* i; buffer containing the value */
unsigned long *value_length, /* i; length of value */

long *return_code); /* o; return code */

HTTPD_file()
Sends a file to satisfy this request. Valid only in PreExit, Service,
NameTrans, Error, and DataFilter steps.

The name of the file to send is in the default CCSID of the job.
void
HTTPD_file(

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; name of file to send */
unsigned long *name_length, /* i; length of the name */

long *return_code); /* o; return code */

HTTPD_exec()
Runs a script to satisfy this request. Valid in PreExit, Service, NameTrans,
and Error steps.

The name of the script to run is in the default CCSID of the job.
void
HTTPD_LINKAGE
HTTPD_exec(

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; name of script to run */
unsigned long *name_length, /* i; length of the name */

long *return_code); /* o; return code */

HTTPD_read()
This function reads the body of the client’s request. It uses HTTPD_ extract
for headers. This function is valid only in the PreExit, Service, and Data
Filter steps.

For the Service step, the data CCSID is determined by the CGI mode. For
%%MIXED%% the data is in the default job CCSID and any encoded
sequences are the EBCIDIC representation of the ASCII character. For
%%EBCIDIC%% and %%EBCIDIC_JCD%% modes, the data is in the
default CCSID of the job (including the escape sequences). For
%%BINARY%% mode, no conversion is performed. For all other steps, this
is the default job CCSID.
void
HTTPD_read(

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; buffer in which to place data */
unsigned long *value_length, /* i/o; buffer size/length of data */

long *return_code); /* o; return code */

Chapter 7. Writing Server API programs 117

HTTPD_write()
Writes the body of the response. Uses HTTPD_set and HTTPD_extract for
headers. Valid in the PreExit, Service, NameTrans, Error, and Data Filter
steps.

If you do not use HTTPD_set() to set the content type before the first time
you call this function, the server assumes you are sending a CGI data
stream.

You may need to use HTTPD_set() to set the CGI environment variable
CONTENT_ENCODING to the appropriate code page for the content of
your response before you send the data to the client.

For the Service step, the data to send is in the default job CCSID for
%%MIXED%% and %%EBCIDIC%% CGI output modes unless overidden
by a character CCSID tag on the content_type header. The data is
%%BINARY%% mode, so it is assumed to be binary..
void
HTTPD_write(

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; data to send */
unsigned long *value_length, /* i; length of the data */

long *return_code); /* o; return code */

HTTPD_log_error()
Writes a string to the server’s error log.

The string passed to HTTPD_log_error must be EBCDIC (CCSID 37) data.
The server converts the strinbg to the CCSID of the error log file.
void
HTTPD_LINKAGE
HTTPD_log_error(

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; data to write */
unsigned long *value_length, /* i; length of the data */

long *return_code); /* o; return code */

HTTPD_log_trace()
Writes a string to the server’s trace log.

The string passed to HTTPD_log_trace must be EBCDIC (CCSID 37) data.
void
HTTPD_LINKAGE
HTTPD_log_trace

unsigned char *handle, /* i; handle (NULL right now) */
unsigned char *value, /* i; data to write */
unsigned long *value_length, /* i; length of the data */

long *return_code); /* o; return code */

HTTPD_restart()
Restarts the server after all active requests have been processed. Valid only
in ServerInit and ServerTerm steps.
void
HTTPD_restart(

long *return_code); /* o; return code */

HTTPD_proxy()
Makes a proxy request. Valid in PreExit and Service steps.

Note: This is a completion function; the response is complete after this
function.

118 Web Programming Guide V4R5

The name of the URL for the proxy request and the body of the request are
in the default CCSID of the job.
void
HTTPD_LINKAGE
HTTPD_proxy(

unsigned char *handle, /* i; handle (NULL right now) */
unsigned char *url_name, /* i; url for the proxy request */
unsigned long *name_length, /* i; length of the url */
unsigned char *request_body, /* i; body of the request */
unsigned long *body_length, /* i; length of the body */

long *return_code); /* o; return code */

Note: Once an HTTPD_ function returns, it is safe for you to free any memory you
passed with it.

Return codes
The server fills in the return code parameter with one of these values depending
on the success of the request.

-1 HTTPD_UNSUPPORTED

The function is not supported.

0 HTTPD_SUCCESS

The function succeeded, and the output fields are valid.

1 HTTPD_FAILURE

The function failed.

2 HTTPD_INTERNAL_ERROR

The function encountered an internal error and cannot continue processing
this request.

3 HTTPD_PARAMETER_ERROR

You may have added one or more incorrect parameters. For example, the
variable you tried to extract is unknown.

4 HTTPD_STATE_CHECK

The function is not valid in this step.

5 HTTPD_READ_ONLY

Returned only by HTTP_set(). The application can not set the variable.

6 HTTPD_BUFFER_TOO_SMALL

Returned only by HTTPD_extract(). The provided buffer was too small.

7 HTTPD_AUTHENTICATION_FAILED

Returned only by HTTPD_authenticate(). Examine the HTTP_RESPONSE
and HTTP_REASON variables for more information.

8 HTTPD_EOF

Returned only by HTTPD_read(). This return code indicates the end of the
request body.

9 HTTPD_ABORT_REQUEST

The request has been aborted because the client has provided an entity that
did not match the condition that is specified by the request.

Chapter 7. Writing Server API programs 119

10 HTTPD_REQUEST_SERVICED

Returned by HTTP_proxy. This return code indicates that the program that
called the function completed the response for this request.

11 HTTPD_RESPONSE_ALREADY_COMPLETED

The function failed because the response for that request completed
processing.

Server API configuration directives
Each step in the request process has a configuration directive that allows you to
indicate which of your application functions you want called and run during that
step. You can add these directives to your server’s configuration file by manually
editing it or by using the Server API Request Processing form in the server’s
Configuration and Administration forms.

Server API usage notes
Here are some notes to consider when using the Server API:
v When appropriate, you can indicate that you want your application function

called for all URL requests or only for URL requests that match a specified
mask.

v You can also have your Authentication functions called for every request or just
for those with a type of Basic.

v The Server API directives, except for the Service and NameTrans directives, can
be in any order in the configuration file. You do not need to include every
Server API directive. If you do not have an application function for a particular
step, just omit the corresponding directive.

v The Service and NameTrans directives work like the Exec directive and are
dependent on its occurrence and placement relative to other mapping directives
within the configuration file. This means that the server processes the Service,
NameTrans, Map, Pass, Exec, Redirect, and Fail directives in their sequential
order within the configuration file. When it successfully maps a URL to a file, it
does not read or process any other of these directives.

v You can also have more than one configuration directive for a step. For example,
you could include two NameTrans directives, each pointing to a different
application function. When the server performs the name translation step, it will
process your name translation functions in the order in which they appear in the
configuration file.

v Multiple IP configuration (using a trailing IP address or template) is supported
only for the Service and NameTrans directives.

v If the server fails to load a specific application function or you have a ServerInit
directive that does not return an OK return code, no other application functions
for that compiled Server API program will be called. Any processing specific to
that program which was done up to this point is ignored. Other Server API
programs that you include in these directives, and their application functions,
are not affected.

Server API directives and syntax

Directive Variable Access path

ServerInit /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name init_string

PreExit /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

120 Web Programming Guide V4R5

Directive Variable Access path

Authentication type /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

NameTrans /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name IP_address_templete

Authorization /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

ObjectType /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

Service /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name* IP_address_template

Data Filter /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name:function_name:function_name

Log /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

Error /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

PostExit /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

ServerTerm /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

Server API directive variables
The variables in these directives have the following meanings:

type Used only with the Authentication directive. This variable determines if
your application function is called. Valid values are:

Basic Application function is called only for basic authentication requests

* Application function is called for all requests

/URL Determines for which URLs your application function is called.
URL specifications in these directives are virtual (they do not
include the protocol) but a slash (/) precedes them. For example,
/www.ics.raleigh.ibm.com is correct, but
http://www.ics.raleigh.ibm.com is not. Valid values are:

A specific URL
Application function is called only for that URL

URL templete
Application function is called only for URLs that match the
template. You can specify a template as /URL*,/*, or *.

Note: An URL template is required with the Service
directive if you want path translation to occur.

/path/file
The fully qualified file name of your compiled program

:function_name
The name you gave your application function within your
program

In the DataFilter directive, you must supply the names of
the open, write, and close functions.

The Service directive requires an asterisk (*) after the
:function_name, if you want to have access to path
information.

init_string
Optional on the ServerInit directive, this can contain any

Chapter 7. Writing Server API programs 121

arbitrary text you want to pass to your application
function. Use HTTPD_extract() to extract the text from the
INIT_STRING variable.

IP_address_template
Used only with the Service and NameTrans directives on
servers that have more than one IP address. This variable
determines if your application function is called only for
requests that comes on a specific IP address or on a range
of IP addresses.

Compatibility with other APIs
The Server API is compatible with other APIs, such as CGI. You can run your
existing CGI programs on all the server’s operating systems.

Porting CGI programs
Here are a few guidelines for porting CGI applications that are written in C to use
the Server API:
1. Remove your main() entry point or rename it so you can build a service

program.
2. Eliminate global variables or protect them with a mutual exclusion semaphore.
3. Change the following calls in your programs:

v Change printf() header calls to HTTPD_set().
v Change printf() data calls to HTTPD_write().
v Change getenv() calls to HTTPD_extract(). Note, that this returns deallocated

memory, so you must free the result.
4. Remember, that the server runs in a multi-threaded environment and your

application functions must be threadsafe. If the functions are re-entrant,
performance will not decrease.

5. Do not forget to set the Content-Type header if you are using HTTPD_write()
to send data back to the client.

6. Check your code for memory leaks.
7. Think about your error paths. If you generate error messages yourself and send

them back as HTML, you should return HTTPD_OK from your service
functions.

Authentication and Authorization
Authentication is the verification of the security tokens that are associated with this
request. Authorization is the process using the security tokens to determine if the
requester has access to the resource. In the IBM HTTP Server, authentication is part
of the authorization process; it occurs only when authorization is required.

If your Server API application provides its own authorization process, it will
override the default server authorization and authentication. Therefore, if you have
Authorization directives in your configuration file, the application functions
associated with them must also handle any necessary authentication. The
predefined HTTPD_authenticate() function is provided to assist you with this.

There are three ways you can provide for authentication in your authorization
application functions:

122 Web Programming Guide V4R5

v Write your own separate authorization and authentication application functions.
In your configuration file, use both the Authorization and the Authentication
directives to specify these functions. Be sure to include HTTPD_authenticate() in
your authorization application function.
When the Authorization step is run, it performs your authorization application
function which, in turn, calls your authentication application function.

v Write your own authorization application function but have it call the default
server authentication. In your configuration file, use the Authorization directive
to specify your function. In this case, you will not need the Authenticate
directive. Be sure to include HTTPD_authenticate() in your authorization
application function.
When the Authorization step is run, it performs your authorization application
function which, in turn, calls the default server authentication.

v Write your own authorization application function and include all your
authentication processing right into it. Do not use HTTPD_authenticate() in your
authorization application function. In your configuration file, use the
Authorization directive to specify your function. In this case, you will not need
the Authentication directive.
When the Authentication step is run, it performs your authorization application
function and any authentication it included.
If your Server API application does not provide its own authorization process,
you can still provide customized authentication.

If your Server API application does not provide its own authorization process, you
can still provide customized authentication. To do this, write your own
authentication application function. In your configuration file, use the
Authentication directives to specify your function. In this case, you do not need
the Authorization directive.

Notes:

1. If you do not have any Authorization directives in your configuration file, or
their specified application functions decline to handle the request, the server’s
default authorization will occur.

2. If you do have Authorization directives in your configuration file and their
application functions include HTTPD_authenticate(), the server calls any
authentication functions specified in the Authentication directives. If you do not
have any Authentication directives defined, or their specified application
functions decline to handle the request, the server’s default authentication will
occur.

3. If you do have Authorization directives in your configuration file but their
application functions do not include HTTPD_authenticate(), no authentication
functions will be called by the server. You must code your own authentication
processing as part of your authorization application functions or make your
own calls to other authentication modules.

4. The IBM HTTP Server automatically generates the challenge (by prompting the
browser to return user ID and password) if you return 401 or 407 from your
authorization exit. However, you must still configure a protection setup so that
this will occur correctly.

Environment variables
You can use environment variables in the predefined functions HTTPD_extract()
and HTTPD_set(). They represent values you can extract from a client request or

Chapter 7. Writing Server API programs 123

values you can set or create when processing a client request. For a list of
environment variables you can use with Server API, see “Environment variables”
on page 13.

Server API variables
ACCEPT_RANGES

Used to accept ranges other than bytes.

ALL_VARIABLES
All the CGI environment variables. For example:
ACCEPT_RANGES ON
AUTH_STRING
CLIENT_ADDR 9.67.84.3

CLIENT_ADDR
IP address for the client. For example:
9.67.193.2

CLIENT_HOST
Same as REMOTE_ADDR.

CLIENTMETHOD
HTTP method that is used in the request.

CLIENT_NAME
Host name of the machine making the request. For example:
kevin

CLIENT_PROTOCOL
Name and version of the protocol the client is using to make the request.
For example:
HTTP

CONNECTIONS
Number of connections being served, or number of active requests. For
example:
15

CONTENT_CHARSET
This is the character set of the response for text/*. For example:
US ENGLISH

CONTENT_TYPE_PARAMETERS
Other MIME attributes, but not the character set.

DOCUMENT_NAME
This is the name of the topmost document. If the HTML was generated by
CGI, this contains the name of the CGI.

DOCUMENT_ROOT
As defined by pass rules.

DOCUMENT_URI
Same as DOCUMENT_URL.

DOCUMENT_URL
The Uniform Request Locator. For example:
http://www.anynet.com/xuserk/main.htm

EXPIRES
Defines the expiration for documents that are stored in a proxy’s cache.

124 Web Programming Guide V4R5

ERROR_INFO
Specifies the error code to determine the error page. For example:
401

HTTP_COOKIE
Contains the cookie that is sent with this request to communicate state
information. For example:
CustomerNumber=HJ68944

You can find details about cookies at URL:
http://www.netscape.com/newsref/std/cookie_spec.html.

HTTP_REASON
Sets the reason string in the HTTP response header.

HTTP_RESPONCE
Sets the response code in the HTTP response header.

INIT_STRING
The string specified on the ServerInit directive.

LAST_MODIFIED
For example:
12/25/97

LOCAL_VARIABLES
All the user-defined variables.

PASSWORD
For Basic authentication, contains the decoded password. For example:
password

Note: IBM HTTP Server for AS/400 does not allow access to the
PASSWORD variable if authorization is configured which uses
AS/400 user profiles and passwords for authentication.

To prevent an application from obtaining an AS/400 user profile
password, HTTPD_extract() is sensitive to the type of protect setups
that are currently configured. If a protection setup is configured
with a password file of %%SYSTEM%% (protection requiring
AS/400 user profile password), HTTP_extract() for PASSWORD
returns HTTP_PARAMETER_ERROR and sets the value parameter
to *CONFLICT. Otherwise, HTTP_extract() returns the appropriate
value.

PATH Fully translated path.

PEAKCONNECTIONS
Defines the peak number of connections the server allows. For example:
45

PPATH
Partially translated path.

PROXY_ACCESS
Defines whether the request is a proxy request or not. For example:
NO

PROXY_CONTENT_TYPE
Content-Type header of the proxy request that is made through
HTTPD_proxy. When information is sent with the method of POST, this

Chapter 7. Writing Server API programs 125

variable contains the type of data included. You can create your own
content type in the server configuration file and map it to a viewer. For
example:
application/x-www-form-urlencoded

PROXY_CONTENT_LENGTH
Content-Length header of the proxy request that is made through
HTTPD_proxy. When information is sent with the method of POST, this
variable contains the number of characters. Servers typically do not send
an end-of-file flag when they forward the information by using stdin. If
required, you can use the CONTENT_LENGTH value to determine the end
of the input string. For example:
7034

PROXY_METHOD
Method for the request that is made through HTTPD_proxy.

QUERY_STRING_UNESCAPED
The search query sent by the client. This is undefined unless HTML was
generated by a CGI program.

REQHDR
Defines a list of the headers that are sent by the client.

REQUEST_CONTENT_TYPE
When information is sent with the method of POST, this variable contains
the type of data included. You can create your own content type in the
server configuration file and map it to a viewer. For example:
application/x-www-form-urlencoded

RESPONSE_CONTENT_LENGTH
When information is sent with the method of POST, this variable contains
the number of characters. Servers typically do not send an end-of-file flag
when they forward the information by using stdin. If required, you can use
the CONTENT_LENGTH value to determine the end of the input string.
For example:
7034

SCRIPT_NAME
URL of the request.

SERVER_ADDR
Local IP address for the server.

SERVER_ROOT
Directory where the server program is installed.

SSI_DIR
The path of the current file relative to SSI_ROOT. If the current file is in
SSI_ROOT, this value is ″/″.

SSI_FILE
The file name of the current file.

SSI_INCLUDE
The value that is used in the include command that retrieved this file. This
is not defined for the topmost file.

SSI_PARENT
The path and file name of the includer, relative to SSI_ROOT.

126 Web Programming Guide V4R5

SSI_ROOT
The path of the topmost file. All include requests must be in this directory
or a child of this directory.

Example:
<!--#echo var=SSI_DIR -->

Note: You can use echo to display a value set by the set or global
directives.

URI Same as DOCUMENT_URL

URL Same as DOCUMENT_URL

USERID
Same as REMOTE_USER.

USERNAME
Same as REMOTE_USER.

Note: All headers sent by the client (such as Set-Cookie) are prefixed by ″HTTP_″,
and their values can be extracted. To access variables that are headers, prefix
the variable name with ″HTTP_″. You can also create new variables using
the HTTP_set() predefined function.

Chapter 7. Writing Server API programs 127

128 Web Programming Guide V4R5

Chapter 8. Writing Java Servlets

Servlets are ordinary Java programs that use additional packages (and the
associated classes and methods) found in the Java Servlet API. Servlets generate
dynamic content for web pages and run on the server.

The server can load a servlet automatically when it starts, or when the first client
makes a request for the services of the servlet. Once loaded, servlets stay running,
waiting for additional client requests.

Servlets extend the capabilities of the web server by creating a framework for
providing requests and or response services over the web. A client sends a request
to the server. The server sends the request information to the servlet. The servlet
then constructs a response that the server sends back to the client. Servlets run
independently of protocol or platform.

Java servlets can offer a performance advantage. Because they run on the server,
they don’t require download time.This makes servlets faster than applications
which run on the client’s system and require download time. When you choose to
use a servlet, you don’t encounter difficulties with the application passing through
a firewall. Java servlets also offer an additional performance advantage because
they are multi-threaded.

Because it is a Java program, the servlet can use all the capabilities of the Java
language in constructing the response. The servlet can also interact with outside
resources, such as files, databases or other applications (also written in Java, or
other languages), to construct the response.

The response to the client, therefore, can be a dynamic and unique response to the
particular interaction, rather than an existing static HTML page.

Overview of servlets
Servlets perform a wide range of functions, such as:
v A servlet can create and return an entire HTML web page, with dynamic content

based on the nature of the client request.
v A servlet can create just a portion of an HTML web page embedded in an

existing static HTML web page.
v A servlet can communicate with other resources on the server, including

databases, other Java applications, and applications written in other languages.
v A servlet can handle connections with multiple clients, accepting input from and

broadcasting results to the multiple clients. A servlet could, for example, be a
multi-player game server.

v You can develop a servlet that allows a client to upload an agent to the server
where the server runs the servlet.

IBM’s WebSphere™ Application Server provides the foundation for deploying and
running your e-business™ applications. It provides a secure, reliable execution
environment for Java servlets. You can build and test Java servlets for WebSphere,

© Copyright IBM Corp. 1997, 2000 129

all from a single integrated environment. The VisualAge® for Java servlet builder
enables you to visually develop new Java servlets and run-test them automatically
in a WebSphere test environment.

For more information about Java servlets and the Websphere Application Server,
go to URL: http://www.software.ibm.com/webservers/appserv/ .

130 Web Programming Guide V4R5

Chapter 9. Using Server-Side Includes

This chapter discusses using server-side includes with IBM HTTP Server for
AS/400.

Server-side includes allow you to insert information into CGI programs and HTML
documents that the server sends to the client. This chapter describes the commands
that are required to make server-side includes work in your CGI programs and
HTML documents.

Considerations for using server-side includes
Before using server-side includes on your server, there are a few issues you should
consider. One issue is performance. Performance can be significantly impacted
when the server is processing files while sending them. Another issue is security.
Allowing users to run commands can be a security risk. Care should be taken
when deciding which directives you use server-side includes in and in which
directories you use the exec command. You can minimize the security risk if you
do not enable the exec command.

You should also note that you cannot refer to files recursively. For example, if you
are running file sleepy.html and the program finds
<--!#include file="sleepy.html"--> the server does not detect the error and the
server loops until it abends. However, you can refer to files within files. For
example, file sleepy.html refers to files smiley.html references dopey.html.

Preparing to use server-side includes
To use server-side includes, you must add the AddType directive to your
configuration file. Two examples follow:

Examples:
AddType .shtml text/x-ssi-html 8 bit 1.0

AddType .htmls text/x-ssi-html 8 bit 1.0

Note: If you use file extensions other than .shtml or .htmls, you should check the
AddType directive to see if that extension already exists. See the
configuration file, appendix listing, or the MIME form for a list of existing
AddType directives.

You can also use the imbeds directive to specify whether server-side includes are
used in HTML documents, CGI programs, or both. Examples of this directive
follow:

Examples:
imbeds value

imbeds on

Default: imbeds off

The server does not process your error files for imbeds, regardless of the file
extensions or use of the imbeds directive.

© Copyright IBM Corp. 1997, 2000 131

Format for server-side includes
The current date, the size of a file, and the last change of a file are examples of the
kind of information that can be sent to the client. There are commands that need to
be included in the HTML document comments. The commands have the following
format:
<!--#directive tag=value ...-->

<!--#directive tag="value" ...-->

The quotes around value are optional. However, quotes are required for imbedding
spaces.

Directives for server-side includes
Use the config directive to control certain aspects of file processing. Valid tags
include cmntmsg, errmsg, sizefmt, and timefmt.

cmntmsg — specifies the message appended to the beginning of text: Use this
tag to specify the message that gets appended to the beginning of any text that
follows a directive specification and comes before ″—>″.

Example:
<!--#config cmntmsg="[This a comment]"-->

<!--#echo var=" " extra text -->

Result: (Output from the echo) <!—This is comment extra text –>.

Default: [the following was extra in the directive].

errmsg — specify the message sent to the client: Use this tag to specify the
message that is sent to the client if an error occurs when a file is being processed.
The message is logged in the server’s error log.

Example:
<!--#config errmsg="[An error occurred]" -->

Default: ″[an error occurred while processing this directive]″.

sizefmt — specify file size format: Use this tag to specify the format used when
displaying the file size. In the following examples, bytes is the value used for a
formatted number of bytes. abbrev displays the number of kilobytes or megabytes.

Example 1:
<!--#config sizefmt = bytes -->
<!--#fsize file=foo.html -->

Result: 1024

Example 2:
<!--#config sizefmt=abbrev -->
<!--#fsize file=foo.html -->

Result: 1K

Default: ″abbrev″

132 Web Programming Guide V4R5

timefmt — specify date format: Use this tag to specify the format used when
providing dates.

Example:
<!--#config timefmt="%T %D" -->
<!--#flastmod file=foo.html -->

Result: ″10/18/95 12:05:33″

Default: ″%a, %d %b-%Y %T %Z″

The following strftime() formats are valid with the timefmt tag:

Table 4. Conversion Specifiers Used by strftime()

Specifier Meaning

%% Replace with %

%a Replace with the abbreviated weekday name.

%A Replace with the full weekday name.

%b Replace with the abbreviated month name.

%B Replace with the full month name.

%c Replace with the date and time.

%C Replace with the century number (year divided by 100 and
truncated)

%d Replace with the day of the month (01-31)

%D Insert the date as %m/%d/%y.

%e Insert the month of the year as a decimal number (01-12). With C
POSIX this field is a 2-characters long, right-justified, and blank
filled.

%E[cCxyY] If the alternative date and time format is not available, the %E
descriptions are mapped to their unextended counterparts. For
example, %E is mapped to %C.

%Ec Replace with the alternative data and time representation.

%EC Replace with the name of the base year in the alternative
representation.

%Ex Replace with the alternative data representation.

%EX Replace with the alternative time representation.

%Ey Replace with the offset from %EC (year only) in the alternative
representation.

%EY Replace with the full alternative year representation.

%h Replace with the abbreviated month name. This is the same as %b.

%H Replace with the hour (23-hour clock) as a decimal number (00-23).

%I Replace with the hour (12-hour clock) as a decimal number (00-12).

%j Replace with the day of the year (001-366).

%m Replace with the month (01-12)

%M Replace with the minute (00-59)

%n Replace with a new line.

Chapter 9. Using Server-Side Includes 133

Table 4. Conversion Specifiers Used by strftime() (continued)

Specifier Meaning

%O[deHlmMSUwWy] If the alternative date and time format is not available, the %E
descriptors are mapped to their unextended counterparts. For
example, %Od is mapped to %d.

%Od Replace with the day of the month, using the alternative numeric
symbols. Fill as needed with leading zeros if there is any
alternative symbol for zero, otherwise with leading spaces.

%Oe Replace with the day of the month, using the alternative numeric
symbols, filled as needed with leading spaces.

%OH Replace with the hour (24 hour clock) using the alternative
numeric symbols.

%OI Replace with the hour (12 hour clock) using the alternative
numeric symbols.

%Om Replace with the month using the alternative numeric symbols.

%OM Replace with the minutes using the alternative numeric symbols.

%OS Replace with the seconds using the alternative numeric symbols.

%OU Replace with the week number of the year (Sunday as the first day
of the week, rules corresponding to %U) using the alternative
numeric symbols.

%Ow Replace with the weekday (Sunday=0) using the alternative
numeric symbols.

%OW Replace with the week number of the year (Monday as the first
day of the week) using the alternative numeric symbols.

%Oy Replace with the year (offset from %C) in the alternative
representation and using the alternative numeric symbols.

%p Replace with the local equivalent of AM or PM.

%r Replace with the string equivalent to %I:%M:%S %p

%R Replace with the time in 24 hour notation (%H:%M).

%S Replace with seconds (00-61).

%t Replace with a tab.

%T Replace with a string equivalent to %H:%M:%S.

%u Replace with a weekday as a decimal number (1 to 7), with a 1
representing Monday.

%U Replace with the week number of the year (00-53) where Sunday is
the first day of the week.

%V Replace with the week number of the year (01-53) where Monday
is the first day of the week.

%w Replace with the weekday (0-6) where Sunday is 0.

%W Replace with the week number of the year (00-53) where Monday
is the first day of the week.

%x Replace with the appropriate date representation.

%X′ Replace with the appropriate time representation.

%y Replace with the year with the century.

%Y Replace with the year with the current century.

%Z Replace with the name of the time zone or no characters if the time
zone is not known.

134 Web Programming Guide V4R5

Note: The operating system configuration determines the full and abbreviated
month names and years.

Use the echo directive to display the value for specified environment variables
using the var tag. If a variable is not found, a (None) is displayed. In addition to
the standard Common Gateway Interface (CGI) variables, you can also display the
following environment variables:

DATE_GMT
The current date and time in Greenwich Mean Time. The config timefmt
directive defines the formatting of this variable.

DATE_LOCAL
The current date and local time. The formatting of this variable is defined
using the config timefmt directive.

DOCUMENT_NAME
This is the name of the topmost document. If the HTML was generated by
CGI, this contains the name of the CGI.

DOCUMENT_URI
The full URL the client entered, without the query string.

LAST_MODIFIED
The current data and time that the current document was last changed.
The config timefmt directive defines the formatting of this variable.

QUERY_STRING_UNESCAPED
The search query sent by the client. This is undefined unless the HTML
was generated by a CGI program.

SSI_DIR
The path of the current file relative to SSI_ROOT. If the current file is in
SSI_ROOT, this value is ″/″.

SSI_FILE
The file name of the current file.

SSI_INCLUDE
The value used in the include command that retrieved this file. This is not
defined for the topmost file.

SSI_PARENT
The path and file name of the includer, relative to SSI_ROOT.

SSI_ROOT
The path of the topmost file. All include requests must be in this directory
or a child of this directory.

Example:
<!--#echo var=SSI_DIR -->

Note: You can use echo to display a value set by the set or global
directives.

You can use the exec directive to include the output of a CGI program. The Exec
directive discards any HTTP headers CGI outputs except for:

content-type
determines whether to parse the body of the output for other Includes.

content-encoding
determines if EBCDIC to ASCII translation must be performed.

Chapter 9. Using Server-Side Includes 135

last-modified
replaces the current last modified header value if it is later.

You can use the cgi directive to specify the URL of a virtual path to a CGI
program.

Example 1:
<!--#exec cgi="/cgi-bin/program/path_info?query_string" -->

Example 2:
<!--#exec cgi="&path;&cgiprog;&pathinfo;&querystring;" -->

This example shows the use of variables.

You can use the flastmod directive to display the last time and date the document
changed. The config timefmt directive defines the formatting of this variable. The
file and virtual tags can be used with this directive, and the meaning is the same
as it is for the include directive.

Directive Formats:
<!--#flastmod file="/path/file" -->

<!--#flastmod virtual="/path/file" -->

Example:
<!--#flastmod file="FOO" extra text -->

Result: 12May96 <!— This is extra text –>

Use the fsize directive to display the size of the specified file. The formatting of
this variable is defined using the config sizefmt directive. You can use the file and
virtual tags with this directive, and the meaning is the same as it is for the include
directive.

Examples:
<!--#fsize file="/path/file" -->

<!==#fsize virtual="/path/file" -->

Result: 1K

Use the global directive to define global variables that are echoed by this file, or
any included files.

Example:
<!--#global var=VariableName value="Some Value" -->

If you want to refer to a parent document across the ″virtual″ boundary, you need
to set a global variable DOCUMENT_URI. You must also refer to the global
variable in the child document. The following is an example of the HTML coding
you need to insert in the parent document:

Example:
<!--#global var="PARENT_URI" value=&DOCUMENT_URI; -->

136 Web Programming Guide V4R5

The following is an example of the HTML coding you need to insert in the child
document:

Example:
<!--#flastmod virtual=&PARENT_URI; -->

Use the include directive to include a document (the text from a document) in the
output. You can use the file and virtual tags with the include directive.

file - specify file name: Use this tag to specify the name of a file.

For the flastmod, fsize, and include directives, the file tag is assumed to be relative
to SSI_ROOT if preceded by a ’/’. Otherwise, it is relative to SSI_DIR. The file
specified must exist in SSI_ROOT or in one of its descendents.

Example:
<!--#include file="/path/file" -->

virtual - specify a document URL: Use this tag to specify the URL of a virtual
path to a document.

For the flastmod, fsize, and include directives, the virtual tag is always passed
through the server’s mapping directives.

Example:
<!--#include virtual="/path/file" -->

Use the set directive to set a variable that only this file can be echo later.

Example:
<!--#set var="Variable 2" value="AnotherValue" -->

Variables: Server-side includes also allow you to echo a variable already set. While
defining a directive, you can also echo a string in the middle of ″value″. For
example:
<!--#include file="&filename;" -->

Nothing is displayed if an unrecognized variable is found.

Server-side includes look for the variable, echoes where the variable is found, and
proceeds with the function. You can have multiple variable references. When
server-side includes encounter a variable reference inside a server-side include
directive, it attempts to resolve it on the server side. The following example
escapes the & so that server-side includes do not recognize it as a variable. In the
second line of the example, the variable ″&index;″ is a server-side variable and is
used to construct the variable name ″var1″. The variable ê is a client side
variable, so the & is escaped to create the value ″:frêd″ or ″fred″ with a
circumflex over the e.
<!--#set var="index" value="1" -->
<!--#set var+"var&index;" value+"fr\êd" -->
<!--#echo var="var1" -->

The following characters can be escaped. Escape variables must be preceded with a
backslash (\).

Chapter 9. Using Server-Side Includes 137

\a Alert (bell)

\b Backslash

\f Form feed (new page)

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\’ Single quote mark

\″ Double quote mark

\? Question mark

\\ Backslash

\- Hyphen

\. Period

\& Amphersand

138 Web Programming Guide V4R5

Chapter 10. Troubleshooting your CGI programs

You can use the Work with Active Jobs (WRKACT JOB) command to check on the
status of server jobs, as follows:
WRKACTJOB SBS(QHTTPSVR) JOB(server_instance)

When the server is not processing a request, the Work with Active Jobs display
might be similar to Figure 1:

To find out if server jobs have ended abnormally, check the spooled files that
contain the job logs (QPJOBLOG) for the user profile QTMHHTTP.

The symptoms that are described in this section would be seen running a request
to the AS/400 server at a browser.

Symptom
Connection abandoned, dropped, or no data sent.

Note: Different browser issues different messages when no data is returned to the
browser. Abandoned, dropped or no data will be displayed at the browser.

Cause: The system has incorrectly formatted a CGI program that writes data to
standard output. The data that is written to stdout may have one of the following
problems:
v No data written to stdout
v No “Content-type”, “Location”, or “Status” line

Work with Active Jobs AS400SYS
10/22/97 16:35:38

CPU %: .4 Elapsed time: 00:02:01 Active jobs: 98

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status

DEFAULT QTMHHTTP BCH .0 PGM-QZHBHTTP TIMW
DEFAULT QTMHHTTP BCI .0 TIMW
DEFAULT QTMHHTTP BCI .0 TIMW
DEFAULT QTMHHTTP BCI .0 TIMW

Bottom
Parameters or command
===>
F3=Exit F5=Refresh F10=Restart statistics F11=Display elapsed data
F12=Cancel F23=More options F24=More keys

Figure 1. WRKACTJOB SBS(QHTTPSVR) Job(DEFAULT)

© Copyright IBM Corp. 1997, 2000 139

v No new line character after HTTP response header
v No data after HTTP response header.

Solution: Write the data to stdout with “Content-type: ” line with two new line
characters (“\n”) and the data to be returned to the client. For example:
Content-type: text/plain\n

\n
This data is returned to the client

Cause: CGI program caused an exception message that was not handled by the
CGI program.

Solution: Look at the active server job logs in Figure 1 on page 139. If the system
does not indicate a message in the joblog for the active server jobs, do a WRKSPLF
QTMHHTTP. Check for server jobs that ended when the system ran the CGI
program. Change the program to monitor for the unhandled message.

Cause: The program being called does not exist in the library.

Solution: Check the library for the correct name.

Cause: There is a bug in your user-created CGI program.

Solution: You need to set up a scaffolding environment to debug the CGI
application prior to integration with server:
1. Issue the command ENDTCPSVR *HTTP HTTPSVR(server_instance)
2. Issue the command STRTCPSVR *HTTP HTTPSVR(server_instance '-minat 1

-maxat 1')

Note: You also may need to change script_timeout and output_timeout to be
larger. If you are stepping through your code, it may take too long and
script_timeout or output_timeout may expire. This causes the server to
terminate the job you are debugging.

Ending and starting the server ensures that only one worker job is running.
a. Issue the command WRKACTJOB JOB(server_instance)

Three active jobs are displayed for this server instance. The first job in the
list is always the server instance server job (Function PGM-QZHBHTTP).
The second and third jobs in the list are the CGI program jobs. One is for
single thread-capable CGI programs, and the other is for
multithread-capable CGI programs (Java).
Select option 10 to display the job log.
If your CGI program is single thread capable (not written in Java language),
message HTP2001 will be in the job log. If your CGI program is multithread
capable (Java), message HTP2002 will be in the job log.
Record the Number:, User:, and Job: values for your CGI program job.
Press F12.
Issue the command STRSRVJOB <Number/User/Job>.

b. For the user CGI program, issue the command STRDBG <usercgilib/cgipgm>

If the program accesses a database file on the AS/400, you must specify
UPDPROD(*YES). See the help for the STRDBG command.

140 Web Programming Guide V4R5

Note: You will probably need additional authority to troubleshoot the CGI
program. For example, you will probably need authority to the
QTMHHTTP user profile.

c. Set breakpoints in the program.
d. On the browser, issue a URL that would run the CGI program.

The Pass and Exec directives that request the document and run a CGI
program must be in WRKHTTPCFG.

e. After the system issues an HTTP request on the browser, return to the
AS/400 session that ran STRSRVJOB. It should have stopped at a program
breakpoint.

Ending and starting the server ensures that only one worker thread is running.
3. When finished with debug, reset the server values:

a. Issue the command ENDDBG
b. Issue the command ENDSRVJOB
c. Issue the command WRKACTJOB SBS(QHTTPSVR) JOBserver_instance

d. Issue the command STRTCPSVR *HTTP HTTPSVR(server_instance

Symptom
The system is not converting or handling special characters as expected.

Cause: The browser inserts special characters using escape sequences which
requires special handling by the CGI program.

Solution: Browsers create escape sequences (ISO 8859) for special characters (for
example, : . , ! @ # $ % *, and so on.) These characters come into standard input or
into the QUERY_STRING environment variable in the form “%xx”, where “xx” is
the two characters representing the ASCII hexadecimal value. (For example, a
comma comes in as “%2C”. For CGI input mode %%MIXED%%, these three
characters “%xx” are converted to EBCDIC, but the values of “xx” are not changed
to the corresponding EBCDIC code points.

There are two approaches to handling escape sequences:
1. Convert the EBCDIC representation of the ASCII escape sequence to an

EBCDIC escape sequence or use CGI input mode %%EBCDIC%%. This is
necessary because the QtmhCvtDB API assumes that escape sequences represent
EBCDIC code points, and the API converts them to the corresponding EBCDIC
character. For example, %2C, which represents an ASCII comma, is converted
to EBCDIC X'2C', which is not an EBCDIC comma.

2. Convert the EBCDIC representation of the ASCII escape sequence to the
EBCDIC equivalent character.

The following approach outlined in the first conversion technique listed above:

Note: The hex representation of the %2C from the browser was 0x253243. When
this escape sequence is converted to EBCDIC, it ends up as 0x6CF2C3.

1. Convert the “xx” in “%xx” to the corresponding EBCDIC character. In this case
0xF2C3 is converted to 0x2C.

2. For the first approach, convert the EBCDIC character to the two-byte form.
Then you can reinsert the two bytes back into the input stream in the same

Chapter 10. Troubleshooting your CGI programs 141

place they originally appeared. The 0x6B would be converted to 0xF6C2, and
the resultant escape sequence would be 0x6CF6C2.
For the second approach, leave the data in its EBCDIC form and replace the
original escape sequence (three characters) with the single character. In this
case, replace 0x6CF2C3 with 0x6B.

Note: The CGI program should preserve an escape sequence that represents
the character “%”.

3. Call QtmhCvtDB to convert the input stream.

Note: 7-bit ASCII CCSID 367 is standard on browsers.

Symptom
Error 403: Forbidden - Path not valid for this server.

Whenever a “Forbidden - Path not valid for this server” occurs when running a
CGI program, the configuration directives have not been specified correctly.

Cause when a CGI program is requested: When a CGI program is requested, a
Pass directive appears before an Exec directive. For example:
Pass /qsys.lib/htmlcgi.lib/*
Exec /qsys.lib/htmlcgi.lib/*

In this example any programs in library htmlcgi will not run because the Pass
occurred before the Exec. Once a Pass condition is true, then the server does not go
further.

Solution when a CGI program is requested: The best way to avoid this problem
is to use one of the following:
1. Use Exec and Pass directives with mapping:

Pass /doc/* qsys.lib/html.lib/*
Exec /cgi-bin/* qsys.lib/html.lib/*

2. Put the CGI programs in a separate library:
Exec /qsys.lib/htmlcgi.lib/*
Pass /qsys.lib/htmldoc.lib/html.file/*

Cause when a document is requested: When a document is requested, an Exec
directive appears before a Pass directive. For example:
Exec /qsys.lib/html.lib/*
Pass /qsys.lib/html.lib/*

In this example any documents in library html will not be found because the Exec
occurred before the Pass.

Solution when a document is requested: Change the order of the directives to
correct the problem. For example:
Pass /qsys.lib/html.lib/*
Exec /qsys.lib/html.lib/*

Note: Since the value mapped /qsys.lib/html.lib/ is the same for both Pass and
Exec, the combination above would correct a problem with using an
incorrect directive. It also would leave a directive in the file that could never
be used.

142 Web Programming Guide V4R5

The best way to avoid this problem is to use one of the following:
1. Use Exec and Pass directives with mapping:

Pass /doc/* qsys.lib/html.lib/*
Exec /cgi-bin/* qsys.lib/html.lib/*

2. Put the CGI programs in a separate library:
Exec /qsys.lib/htmlcgi.lib/*
Pass /qsys.lib/htmldoc.lib/html.file/*

Symptom
Error 500: Bad script request -- script ’/qsys.lib/qsyscgi.lib/progname.pgm’
not found or not executable

Cause: Incorrect match of Exec rule.

This message can appear for the following reasons:
v The script does not exist.
v There is a problem with the script, for example, a send error or function check.
v The user QTMHHTTP does not have authority to run this program.

Solution: See Description of “Forbidden - Path not valid for this server”.

Symptom
A browser request that runs a CGI program runs longer than expected. The
browser keeps waiting for a response.

Cause: The CGI application that was running has taken a function check.

Solution: Look at the QSYSOPR message queue for a message that requires a reply
sent from the CGI program that was running. Note the statement where the
program is failing. Use the procedure described under “Symptom: Error 500”.

Chapter 10. Troubleshooting your CGI programs 143

144 Web Programming Guide V4R5

Chapter 11. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1997, 2000 145

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

This product includes computer software created and made available by CERN.
This acknowledgment shall be mentioned in full in any product which includes the
CERN computer software included herein or parts thereof.

Programming Interface Information
This publication is intended to help you to write external programs to
communicate and interact with the IBM HTTP Server for AS/400. This publication
documents General-Use Programming Interface and Associated Guidance
Information provided by IBM HTTP Server for AS/400.

General-Use programming interfaces allow the customer to write programs that
obtain the services of IBM HTTP Server for AS/400.

Trademarks
The following terms are trademarks of IBM Corporation in the United States or
other countries or both.

AS/400
DB2
e-business
IBM
Integrated Language Environment
Net.Data
VisualAge
WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

146 Web Programming Guide V4R5

Other company, product, and service names may be trademarks or service marks
of others.

Chapter 11. Notices 147

148 Web Programming Guide V4R5

Readers’ Comments — We’d Like to Hear from You

AS/400e
HTTP Server for AS/400 Web Programming Guide

Publication No. GC41-5435-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GC41-5435-04

GC41-5435-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
ATTN DEPT 542 IDCLERK
3605 HWY 52 N
ROCHESTER MN 55901-7829

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC41-5435-04

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
A

S/
40

0e
W

eb
Pr

og
ra

m
m

in
g

G
ui

de
V

4R
5

Free Manuals Download Website
http://myh66.com

http://usermanuals.us
http://www.somanuals.com

http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com

http://aubethermostatmanual.com
Golf course search by state

http://golfingnear.com
Email search by domain

http://emailbydomain.com
Auto manuals search

http://auto.somanuals.com
TV manuals search

http://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	Contents
	About HTTP Server for AS/400 Web Programming Guide(GC41-5435)
	Conventions in this book
	AS/400 Operations Navigator
	Installing Operations Navigator

	Prerequisite and related information
	How to send your comments

	Chapter 1. Writing Common Gateway Interface Programs
	Overview of the CGI
	CGI and Dynamic Documents
	Uses for CGI

	The CGI process
	Overview
	Sending Information to the Server
	Data Conversions on CGI Input and Output
	CGI Input Conversion Modes
	DBCS Considerations
	CGI Output Conversion Modes

	Returning Output from the Server
	How CGI Programs Work
	Parsing
	Data manipulation
	Response generation

	Environment variables
	Requests from Standard Search (ISINDEX) Documents
	Passing SSL Environment Variables to a CGI Program

	CGI Programs and AS/400 Activation Groups
	AS/400 Activation Groups
	CGI Considerations
	Activation Group Problem Examples

	Chapter 2. Application Programming Interfaces
	APIs for CGI applications
	Get Environment Variable (QtmhGetEnv) API
	Required parameter group
	Error messages

	Put Environment Variable (QtmhPutEnv) API
	Required parameter group
	Error messages

	Read from Stdin (QtmhRdStin) API
	Required parameter group
	Error Messages

	Write to Stdout (QtmhWrStout) API
	Required parameter group
	Error messages

	Convert to DB (QtmhCvtDB) API
	Required parameter group
	Error messages

	Parse QUERY_STRING Environment Variable or Post stdindata (QzhbCgiParse) API
	Required parameter group
	CGII0200 Format
	Field descriptions
	Error messages

	Produce Full HTTP Response (QzhbCgiUtils) API
	Error messages

	Configuration APIs
	Convert URL to Path (QzhbCvtURLtoPath) API
	Authorities and locks
	Required parameter group
	Error messages

	Retrieve Directive (QzhbRetrieveDirective) API
	Authorities and locks
	Required parameter group
	Error messages

	Retreive a list of all Configuration Names(QzhbGetConfigNames) API
	Authorities and locks
	Required parameter group
	Error messages

	Create a Configuration (QzhbCreateConfig) API
	Authorities and locks
	Required parameter group
	Error messages

	Delete a Configuration (QzhbDeleteConfig) API
	Authorities and locks
	Required parameter group
	Error messages

	Read a Configuration File into Memory (QzhbOpenConfig) API
	Authorities and locks
	Required parameter group
	Error messages

	Free a Configuration File from Memory (QzhbCloseConfig) API
	Authorities and locks
	Required parameter group
	Error messages

	Search for a Main Directive (QzhbFindDirective) API
	Authorities and locks
	Required parameter group
	Error messages

	Search for a Subdirective under Main Directive(QzhbFindSubdirective) API
	Authorities and locks
	Required parameter group
	Error messages

	Return Details of a Main Directive or Subdirective(QzhbGetDirectiveDetail) API
	Authorities and locks
	Required parameter group
	Error messages

	Add a Main Directive or Subdirective (QzhbAddDirective) API
	Authorities and locks
	Required parameter group
	Error messages

	Remove a Main Directive or Subdirective(QzhbRemoveDirective) API
	Authorities and locks
	Required parameter group
	Error messages

	Replace a Main Directive or Subdirective(QzhbReplaceDirective) API
	Authorities and locks
	Required parameter group
	Error messages

	Server instance APIs
	Retrieve a list of all Server Instances(QzhbGetInstanceNames) API
	Authorities and locks
	Required parameter group
	INSN0100 Format
	Field descriptions
	Error messages

	Look up Server Instance Data (QzhbGetInstanceData) API
	Authorities and locks
	Required parameter group
	INSD0100 Format
	Field descriptions
	Error messages

	Change Server Instance Data (QzhbChangeInstanceData) API
	Authorities and locks
	Required parameter group
	Error messages

	Create a Server Instance (QzhbCreateInstance) API
	Authorities and locks
	Required parameter group
	Error messages

	Delete a Server Instance (QzhbDeleteInstance) API
	Authorities and locks
	Required parameter group
	Error messages

	Group file APIs
	Create a new Group File (QzhbCreateGroupList) API
	Authorities and locks
	Required parameter group
	Error messages

	Read a Group File into Memory (QzhbOpenGroupList) API
	Authorities and locks
	Required parameter group
	Error messages

	Free Group File from Memory (QzhbCloseGroupList) API
	Authorities and locks
	Required parameter group
	Error messages

	Retrieve the next Group in the Group List(QzhbGetNextGroup) API
	Authorities and locks
	Required parameter group
	Error messages

	Locate a named group in a Group List (QzhbFindGroupInList)API
	Authorities and locks
	Required parameter group
	Error messages

	Retrieve the Name of a Group (QzhbGetGroupName) API
	Authorities and locks
	Required parameter group
	Error messages

	Add a new Group to the end of a Group List(QzhbAddGroupToList) API
	Authorities and locks
	Required parameter group
	Error messages

	Remove a Group from a Group List(QzhbRemoveGroupFromList) API
	Authorities and locks
	Required parameter group
	Error messages

	Retrieve the next User in the Group (QzhbGetNextUser) API
	Authorities and locks
	Required parameter group
	Error messages

	Locate a User in a Group (QzhbFindUserInGroup) API
	Authorities and locks
	Required parameter group
	Error messages

	Retrieve the Name of a User (QzhbGetUserString) API
	Authorities and locks
	Required parameter group
	Error messages

	Add a new user to the end of a Group (QzhbAddUserToGroup)API
	Authorities and locks
	Required parameter group
	Error messages

	Remove a User or Element from a Group(QzhbRemoveUserFromGroup) API
	Authorities and locks
	Required parameter group
	Error messages

	Chapter 3. Using Net.Data to Write CGI Programs for You
	Overview of Net.Data

	Chapter 4. Using Persistent CGI Programs
	Overview of Persistent CGI
	Named Activation Groups
	Accept-HTSession CGI Header
	HTTimeout CGI Header
	Considerations for using Persistent CGI Programs
	Persistent CGI Program Example

	Chapter 5. Enabling your AS/400 to run CGI programs
	How to enable the server to run CGI programs
	Using directives for security and access control
	The default fail rule
	Explicit CGI enablement
	Server runs only CGI programs

	CGI program considerations

	Chapter 6. Sample programs (in Java, C, and RPG)
	Example of Java language CGI program
	Example of C language CGI program
	Example of RPG language CGI program
	Example of a C language server configuration API program

	Chapter 7. Writing Server API programs
	Overview of the Server API
	General procedure for writing Server API programs
	Guidelines
	Basic server request process
	Application functions
	HTTP return codes and values
	Predefined functions and macros
	Return codes

	Server API configuration directives
	Server API usage notes
	Server API directives and syntax
	Server API directive variables

	Compatibility with other APIs
	Porting CGI programs
	Authentication and Authorization
	Environment variables
	Server API variables

	Chapter 8. Writing Java Servlets
	Overview of servlets

	Chapter 9. Using Server-Side Includes
	Considerations for using server-side includes
	Preparing to use server-side includes
	Format for server-side includes
	Directives for server-side includes

	Chapter 10. Troubleshooting your CGI programs
	Chapter 11. Notices
	Programming Interface Information
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

